用户自定义材料本构模型

本案例通过研究条形均布荷载作用下均质弹性地基的应力、应变和位移分布,详细介绍 了用户自定义材料本构的建立与使用过程。模型示意图如图 7-1 所示。

图 7-1 条形均布荷载作用下的地基模型图

7.1 自定义本构的编程与编译

FSSI 提供了用户自定义本构的模板,通过 VS 和 Intel 编译器即可对其进行操作,具体步骤如下。

7.1.1 搭建编译环境

下载 VS (Visual Studio) 软件并下载与 VS 软件匹配的 Intel 编译器(Intel Visual Fortran Composer XE)。需要注意, Intel 编译器必须要与 VS 版本匹配, 用户可依据图 7-2 下载匹配 的 VS 与 Intel 编译器。

注: 建议使用 2017 版本。

1	VS2013 support was added in Composer XE 2013 SP1 Update 1 (14.0.1)							
(2)	VS2013 support was added in Parallel Studio XE 2015 Update 4 (15.0.4)							
3	VS2017 is supported in Parallel Studio XE 2017 Update 5 only							
(4)	If is Community edition, Desktop development with C++ component is needed							
(5)	If is Community edition, Common Tools for Visual C++ 2015 component is needed						eeded	
0	the version number is same with Intel Parallel Studio XE							
0	12.0&12.1	13.0&13.1	14.0	15.0	16.0	17.0	18.0	19.0

Release Notes of IVF: https://software.intel.com/en-us/articles/intel-fortran-compiler-release-notes

图 7-2 Intel Visual Fortran Composer XE 和 Visual Studio 的版本对应图

7.1.2 根据模板编写 DLL 文件

FSSI 提供的用户自定义本构模板的*.f90 文件提供了 5 个自定义本构的子程序接口, User Defined_SoilModel1、2、3、4、5。本案例以 UserDefined_SoilModel1 为例, 找到"!Local V ariables!用户可以根据自己开发模型的具体情况, 自定义一些临时内部变量"的位置开始编 写(图 7-3 中红色方框位置)。

1	Local Variables	!用户可以更加自己开发模型的具体情况,自定义一些临时内部变量
	Double Precision::Young, Poiss, R1mda, Shear, Dvolv, Svolv Integer Istre	
1	Specific codes defined by Users Goto (1100,1200,1300,1400),Iswdp	
1		
! !	Iswap=3:形成不对和JAK的D矩阵 Iswap=3:形成不对称的D矩阵 Iswap=4:与高斯点上本构执行相关的数组Param、Propd等的初	功治化
1		

```
! 计算增量应力
1100 Continue
     Young=Propd(1)
     Poiss=Propd(2)
     R1mda=Young*Poiss/((1.0D0-2.0D0*Poiss)*(1.0D0+Poiss))
     Shear=Young*0.5D0/(1.0D0+Poiss)
     Dvolv=Dstan(1)+Dstan(2)+Dstan(3)
     Svolv=R1mda*Dvolv
     Dstre(1:3)=Svolv+2.0D0*Shear*Dstan(1:3)
     Dstre(4:Nstre)=Shear*Dstan(4:Nstre)
     Do Istre=1, Nstre
         Estre(Istre)=Estre(Istre)+Dstre(Istre)
     End Do
     !Call Interface_Fssi_Umat1(Propd, Lprpd, Iswdp, Dstre, Dstan, Estan, Dmatx, Estre,
                                                                              å
                              Param, Lpara, Ielem, Igaus, Nstre, RunTime, DeltaTime)
     Goto 1999
1200 Continue
               ! D矩阵对称
    ! Goto 1999
1300 Continue
                ! D矩阵不对称
     Young=Propd(1)
     Poiss=Propd(2)
     R1mda=Young*Poiss/((1.0D0-2.0D0)*Poiss)*(1.0D0+Poiss)
     Shear=Young*0.5D0/(1.0D0+Poiss)
     Dmatx=0.0D0
     Dmatx(1:3, 1:3)=R1mda
     Dmatx(1, 1)=Dmatx(1, 1)+2.0D0*Shear
     Dmatx(2,2)=Dmatx(2,2)+2.0D0*Shear
     Dmatx(3,3)=Dmatx(3,3)+2.0D0*Shear
     Do Istre=4, Nstre
         Dmatx(Istre, Istre)=Shear
     End Do
     ! Call Interface_Fssi_Umatl(Propd, Lprpd, Iswdp, Dstre, Dstan, Estan, Dmatx, Estre,
                                                                               &
                              Param, Lpara, Ielem, Igaus, Nstre, RunTime, DeltaTime)
     Goto 1999
                !本构执行初始化
1400 Continue
     Param=0.0d0
     Fssi中的Param数组等价于Abagus中的状态变量数组Statev
ł
     Param数组的长度在界面上给出。
    ! Param(1)=1.0
                                                           !储存孔隙比
                                                                           Statev(1)=1.0
     !Param(2)=100
                                                           !先期固结压力
                                                                           Statev(2)=100
     !Param(3)=1.0
                                                           !储存初始孔隙比 Statev(3)=1.0
     Goto 1999
1999 Continue
     Return
     End Subroutine UserDefined SoilModel1
```

图 7-3 本案例编写的用户自定义材料本构 UserDefined_SoilModel1 的代码 注:因为在程序中五个自定义本构子程序接口都进行了调用,所以用户不能将未编译的用 户 自定义材料本构代码自行删除,否则会导致编译无法通过,从而致使程序无法运行。

7.1.3 由*.f90 文件生成动态链接库(DLL) 文件

编辑完成后,点击生成—生成解决方案,如图 7-4 所示。如果用户不自己定义保存路径,生成的 DLL 文件默认在图 7-4 中新建项目保存路径下的 UserDefined_SoilModel 文件夹

UserDefined_SoilModel - Micro	soft Visual Studio		
文件(F) 编辑(E) 视图(V) 项目(P)	生成(B) 调试(D) 团队(M) 工具(T)	测试(S) 分析(N)	
0 • 0 👌 • 🍟 💾 🚰 🔊 •	🗴 生成解决方案(B)	Ctrl+Shift+B	🚺 • 🛤 • Ø • 🛤 • Ø • b 🎼 🗉 🗶 🗐 🌾
UserDefined_SoilModel.f90 🕫	重新生成解决方案(R)		
G (Global Scope)	清埋群决万案(C)		s UserDefined_SoilModel1(Propd, Lprpd, Iswdp, Dstre, Dstan, Dmatx, E
🚆 1 🗉 Subrout	对解决方案运行代码分析(Y)	Alt+F11), Dstre, Dstan, Dmatx, &

内, 具体路径是 UserDefined_SoilModel—UserDefined_SoilModel—x64—Debug, Debug 配置

下的 DLL 文件生成路径如图 7-5 所示。

图 7-4 生成用户自定义材料本构 DLL 文件的步骤示意图 图 7-5 Debug 配置下用户自定义本构 UserDefined_SoilModel.dll 文件的存储地址

7.2 Umat 自定义本构模型

	> 自定义本构-三维弹性 > 自定义本构-三维弹性 > UserD	efined_SoilModel → U	serDefined_SoilModel >	x64 > Debug
^	名称	惨改日期	类型	大小
	C BuildLog.htm	2021/4/19 16:39	Microsoft Edge	5 KB
	UserDefined_SoilModel.dll	2021/4/19 16:39	应用程序扩展	36 KB
	UserDefined_SoilModel.dll.intermediate.manifest	2021/4/19 16:39	MANIFEST 文件	1 KB
	ស៊ី៖ UserDefined_SoilModel.exp	2021/4/19 16:39	Exports Library	2 KB
	III UserDefined_SoilModel.lib	2021/4/19 16:39	Object File Library	3 KB

7.2.1 搭建编译环境

编译环境同 7.1.1 搭建编译环境。

7.2.2 根据模板编写 DLL 文件

用户可将 Umat 子程序*.for 文件添加至 UserDefined_SoilModel—Source Files 中, 并修 改 Umat 子程序名称, 如图 7-6 所示。

图 7-6 添加 Umat 子程序

在 UserDefined_SoilModel.f90 文件中,提供了 5 个自定义本构的子程序接口,以 UserDefined_SoilModel1 为例,在此子程序中通过调用 Interface 接口子程序,来实现对

Abaqus Umat 本构模型的调用, FSSI 最多同时支持 5 个 Umat 自定义本构模型的调用。 以 UserDefined_SoilModel1 为例, 如图 7-7 所示

7.2.3 由*.f90 文件生成动态链接库(DLL) 文件

生成 DLL 方式参考 7.1.3 由*.f90 文件生成动态链接库(DLL) 文件

7.3 FssiCAS 图形界面操作——前处理

7.3.1 导入网格和背景线

点击 FssiCAS—Preprocess—Load Mesh, 在弹出的文件选择对话框中选择 Abaqus 输出的 *.inp 网格文件,双击或点击打开按钮,如图 7-8 所示。

Model Results	501 50	uctures Pos	triocess				
PreProcess	📤 😽 Choose Abaqus .inp I	File					×
Gid	← → ~ ↑ → ↓	比电脑 > 桌面 > ∪p	odate → Case7 UserDefined_Soli Model		✔ Ĉ 在 Case	e7 UserDefined_S	Soli P
- Abaqus	组织 ▼ 新建文件夹						•
Gmsh	₩ 文档	* ^	名称 ^	修改日期	类型	大小	
- Ansys FssiMesh	■ 图片 Case21 Seismic d	∲ ynamic response	Project Results	2024/10/9 16:59 2024/10/9 17:32	文件夹 文件夹		
General Conter Boundary General Sector Conternation Con	Multiple Update		Sei Temp Case7 UserDefined_Soli Model.fssi UserDefined_SoilModel.dll	2024/10/9 17:31 2024/10/9 17:31 2022/4/19 9:23 2022/4/15 15:12	文件央 FSSICAS 应用程序扩展	0 KB 36 KB	
Boundary Conditions BC-bottom BC-top Contact Structure-Solid Loads HydroDynamics	 ■ 此电脑 ③ 3D 对象 ■ 视频 ■ 图片 管 文档 ◆ 下载 > 音乐 		◎ UserDefined_SoliModelipp ◎ UserDefined_SoliModel横板,rar	2022/4/15 15:11 2023/1/12 11:31	INP 文件 360压缩 RAR 文件	533 KB 299 KB	
Average State State Average State	 ▲ 点面 二 ★Ht28年 (C-) 文件 	× 客(N): UserDefined_	SoilModel.inp		〜 All File 打开	s (*) Ŧ(O) ਸ਼	~ 汉消

图 7-8 导入 Abaqus 网格的步骤示意图

在弹出对话框中设置流体节点阶次如图 7-9 所示。本案例中固体节点采用四边形四节 点单元。不设置流体节点,因此,界面中流体节点阶次设置为 0,点击 Ok 按钮确认择。

SS Load Mesh			?	×
	Solid Node	Element Type	Fluid Order	
material-1	4	Solid Element	0	
Reduced Ir	Reduced Integration Ok			0k

图 7-9 设置流体节点阶次界面

点击 Preprocess—Load Background—Outer Boundary, 在弹出的文件选择对话框中选择 Abaqus 输出的*.igs 网格文件,双击或点击打开按钮,如图 7-10 所示。界面中展示导入模型 如图 7-11 所示。

图 7-10 加载外背景线 (Outer Boundary) 的步骤示意图

图 7-11 加载网格和外背景线后的模型图

7.3.2 导入自定义材料本构文件

点击左上角工具栏 UserDefined, 在下拉菜单中选择 Soil Model—Add, 即可完成自定义 材料本构的加载, 如图 7-12 所示。

	UserDefined Supp	ort			
	Soil Model	▶ Load			
	Boundary Condition	Delete			
	55 UserDefined Soil Model Loa	ding X			
	Please load the DII file that UserDefined Soil Models	includes the			
	erDefined_SoilModel.dll	Load DII Ok			
S Choose Solid Model Dll					×
← → · ↑ 📙 > 此电脑 > 桌面 > U	pdate → Case7 UserDefined_Soli Model		✔ Ö 在 Case	e7 UserDefined_	Soli 🔎
组织 ▼ 新建文件夹					
Case7 UserDefined_Soli Model ^		修改日期	类型	大小	
Case21 Seismic dynamic response	Project	2024/10/9 16:59	文件夹		
Multiple	Results	2024/10/9 17:32	文件夹		
Update		2024/10/9 17:31	文件夹		
💭 此电脑	ss Case7 UserDefined_Soli Model.fssi	2024/10/9 17:31	FSSICAS	0 KB	
	SuperDefined_SoilModel.dll	2022/4/19 9:23	应用程序扩展	36 KB	
	UserDefined_SoilModel.igs	2022/4/15 15:12	IGS 文件	3 KB	
 图片 	UserDefined_SoilModel.inp	2022/4/15 15:11	INP 又任 260正按 PAP 立件	200 KB	
	Soliviodengo,rar	2023/1/12 11:51	500/15/11 KAK 文1年	299 ND	
▲ 1.300 ★ 主点					
			All Ell-	- (8)	
X1+A(N): UserDefined	I-solliviodel.dll		~ All File	s ()	~
			打开	F(O) 1	取消

图 7-12 导入用户自定义材料本构 DLL 文件

7.3.3 施加边界条件

本案例分别对底边 (y = 0 m) 节点设置 x 与 y 方向的约束,对左右两个侧边 (x = 0 m) 和 (x = 200 m) 的节点设置 x 方向的约束。点击工具栏中图标 ♥,点击工具栏中图标 ♥, 点击工具栏中图标 ♥, 进入 背景线选择模式。点击键盘'R'键,开始选择。进入边界选择模式,点击选择后被选择 的 线会变亮。具体操作如图 7-13。在模型顶部(y = 40 m)施加大小为 500kPa 的条形均布荷 载,如图 7-14 所示。

图 7-13 选择边界线添加边界条件

图 7-14 选择单元添加条形均布荷载 (以压为正)

注: 1.在右侧快捷窗口中点击 Show Boundary Condition,可以检查是否正确添加边界件。
 2.添加边界条件时,第二次设置会覆盖第一次设置,如重复添加边界条件,一定要保证
 证 第二次的边界条件为最终边界条件,或者单独对重复节点进行多种不同的边界条件的设置。

7.3.4 重力场设置

在 y 方向设置重力加速度为-9.806m/s², 如图 7-15 所示。

图 7-15 重力加速度设置界面

7.3.5 水动力边界条件设置

由于本案例不考虑流体节点,不设置水动力边界条件。点击 FssiCAS—Preprocess—Loads—Hydrodynamics—No Hydro。如图 7-16 所示。

图 7-16 水动力边界条件设置

7.3.6 设置材料参数

点击 FssiCAS—Preprocess—Material—Material 1, 用户可以自行更改材料名称, 在弹出 对话框中输入材料参数。本案例是用户自定义本构, 用户在 DLL 文件中一共可以自定 义 5 种 材料本构, 5 种材料本构的名称如图 7-17 所示。界面选择的自定义本构编号必须 与 DLL 文 件中需要调用的本构编号相同,本案例选择 UserDefined_SoilModel1, 具体材料 参数设置如图 7-18 所示。

UserDefined_SoilModel1	
UserDefined_SoilModel2	
UserDefined_SoilModel3	
UserDefined_SoilModel4	
UserDefined_SoilModel5	

图 7-17 用户最多可定义和选择的 5 种自定义本构

Material 1			-	- 🗆
Material Name		material-1		
Constitutive Model:		UserDe	fined SoilModel1	
Succeed		No Succeed		
Initial Stress Tensile			Vec	
Global Stress Integration			165	*
Stress Integration Algorithm	n: [Default 🔻		
Constitutive Model Para	neters:			
Number of State Variables	6			
Number of Material Prope	rty(< 35) 2			
		Value		
Para_1 60e8				
Para_2 0.25				
— Damping Model Paramet	ers:			
Damping Model:	ELAST	IC v		
Young's Modulus (Pa):	0	Poisson's Ratio:	0	
Damping Coefficient	Direct			
α:	0	β:	0	
— Material Parameters: —				
Solid Particle Bulk Modulus	(Pa): 1.0E+20			
Granular Density (kg/m ³):	2700			
Void Ratio:	0			
				ОК

图 7-18 材料参数设置界面

注: Number of Parameters 指的是读入的本构模型参数的个数,例如图 7-18 中本构模型参数有弹性模量和泊松比 2 个,在对应位置填写 2 之后点击键盘"Enter"键即可在 Value 栏中按用户自定义的顺序填写弹性模量和泊松比的数值。

7.3.7 设置求解器类型

点击 FssiCAS—Preprocess—Solver, 在弹出对话框中设置求解器类型, 如图 7-19 所示。

rs solver setup		
Solver:	Static	
Analysis Module:	Traditional Implicit FEM	
Sparse Solver Type:	Direct Sparse Solver (LU)	
- Parameters		
Geometrical Nonlinearity	Off	▼
Rotation	Non-Rotation	▼
Stiffness Matrix Symmetry	No	▼
Iterative Convergence Criteria	0.01	
Property Updation	Non-Updated	▼
Analysis Type	2D-Plane Strain	▼
Displacement Succeed	Yes	▼
NBFGS	1	▼
Parallel Method	CPU OpenMP	▼
CPU Parallel Threads	8	

图 7-19 求解器类型及相关参数设置界面

7.3.8 设置时间步

点击 FssiCAS—Preprocess—Solver—Time Step。Step 1 的时间步选项卡中 Simulation Time (s)为计算总时间,设置为 2 s; Start Time of Current Step(s)为开始计算时间,设置为 0 s; Interval for Time Steps (s)为时间步长,设置为 0.1 s; Interval for Updating Coordinate (s)为 坐标更新时间,设置为 3 s,即不更新坐标; Interval for Updating Global Stiffness Matrix (s) 为刚度矩阵更新时间,设置为 3 s,即不更新刚度矩阵; Maximum Iterations 为每个时间步最 大迭代次数,设置为 10 步; Restart File Output Interval (s)为输出重启文件的时间,设置为 0.1 s; Results File Output Interval (s)为输出某一时刻所有节点/高斯点上的位移、应力、应变 等结果文件的时间间隔,设置为每 0.1 s 输出一次结果文件; Results Output 为选择输出节点 上或高斯点上的结果; State Variables Output 为选择是否输出状态变量; Results Sequence 为 选择设置计算结果序列,可选择是否计算保存位移、应力、应变、加速度等结果; Results Format 为计算结果文件形式,可选择保存为二进制文件或 ASCII 文件; History Output Interval (s)为输出特定的节点或单元上的应力、应变等结果文件的时间间隔,设置为每 0.1 s 输出一次。 a, β 1, β 2 为时间系数, 保持默认值即可,时间步 step1 的具体设置如图 7-20 所示,完成设置后分别点击 Create。

Time Step	? >
Sub Step 1	
Parameter	
Simulation Time (s)	2
Start Time of Current Step (s)	0
Interval for Time Steps (s)	0.1
Interval for Updating Coordinate (s)	3
Interval for Updating Global Stiffness Matrix (s)	3
Maximum Iterations	10
Restart File Output Interval (s)	0.1
Results File Output Interval (s)	0.1
Results Output	On Nodes 🔻
State Variables Output	No 🔻
Results Sequence	Manage
Results Format	Binary 🔻
History Output Interval (s)	0.1
α	0.6
β1	0.605
β2	0.6
[Create Delete

7.3.9 设置初始条件

点击 FssiCAS—Preprocess—Initial State, 设置初始条件, 点击 ok, 完成初始状态设置, 如图 7-21 所示。

si Initial Stat	>
Solver:	Static
Туре:	Generate Initial File
Set initia	state to Zero Yes 💌
	Ok

图 7-21 初始条件设置界面

7.3.10 计算

点击 FssiCAS—Preprocess—Computation—FSSI-W 保存当前项目并开始计算。如果需 要 执行 Results—Soil_Model—Static 路径下用户自己编写或修改的计算文件,则需选择 FSSI-NW 进行计算。显示图 7-22 时表示计算完成。

Literation: 10 Error for Each Dharas, 10E		
_Iteration: TO Error for Each Phase: 1.9E4	-00 1.0E-02 1.0E-02 1.0E-02	
Total Number Of Iterations : 153 Avera	ge Number Of Iterations: 9.0	
Analytical Step: 17 Not Conver	ged at Time : 09:30:48	
Run IIme: 1.700 Cumulative		
Begin To Save Final File	rs succuss	
-	The calculation is complete.	
Displacement Order: 0		
Solution process at this step is completed a	OK OK	
solution process at this step is completed a		
Begin To Save Final File		
Displacement Order 0		

图 7-22 数值计算完成界面

7.4 FssiCAS 图形界面操作——后处理

7.4.1 加载文件

点击 FssiCAS—Postprocess—Open Results File, 选择需要处理的结果文件夹, 如图 7-23 所示。

PostProcess Open Result Files	Fisi Load Files - X	Fisi Choose a Soil Results File			\times
- Load Initial Files - Distribution	File Type: FssiCAS v	$\leftarrow \rightarrow \checkmark \uparrow$ 📕 « Project > Results > Soil_Model >	ٽ ~	在 Soil_Model 中搜索	م
 Soil & Structures Displacement 		组织 ▼ 新建文件夹		855	- 7
Effective Stress Strain	Data Path:	◆下戰 ^ 名称 ^	修改日期	类型	大小
Pore Pressure Seenage Velocity	UserDefined_SoilModel/Project/Results/Soil_Model/Multiple	♪ 音乐 J Multiple	2022/12/18 16:22	文件夹	
Seepage Force Void Ratio Acceleration State Variables Uguefaction Potential Uguefaction Potential Orce Pressure Based Seructural Element OpenfOAM DualSPhysics Pessure Velocity	Load Files Reload Remove	 ■ (a) ■ (本地磁電 (C:)) ■ (万SHIBA EXT ()) ■ (丁SHIBA EXT ()) ■ (¬TSHIBA EXT ()) ■ (¬TSH			
Fluent		🕳 KUZ (J:) 🔍 <			>
B- Children Plot Soil History Wave History		文件夹: Multiple		选择文件夹	取消

图 7-23 加载数值计算结果文件步骤图

7.4.2 绘制分布图

点击 FssiCAS—Postprocess—Distribution Plot—Solid—Displacement, 在后处理界面正上 方的工具栏选择 Displacement X, 且在输入窗口处输入时间步 0.1, 单击键盘上的"回车键", 即可在工作区中显示 0.1 时间步下 X 方向的位移分布, 如图 7-24 所示。

图 7-24 0.1s 时 X 方向的位移分布图 本案例计算结果分布图可以由伸缩栏 Export Results Figure 按键导出,如图 7-25 所示。

>	Display Option				
>	Liquefaction Potential				
>	Scalar Bar				
>	Axis				
>	Perspective				
>	Sectional View				
~	Export				
	Export Results Data				
	Export Current Figure				

图 7-25 伸缩栏输出图像按键位置图

Mean Effective Stress

Fssi Strain X Time: 0.1s Unit: 1.94e-05 40 30 Z (m) 20 -6.17e-06 10 -3.17e-05 0 50 0 100 150 200 X (m)

Fssi

图 7-26 计算结果分布图