单轴拉伸实验

单轴拉伸实验是一种用于测定材料抗拉强度和其他力学性能的基本试验方法。在该实验中,制备的试样通常为圆柱形或矩形,通过施加沿其长度方向的拉伸荷载,观察材料在拉伸过程中发生的变形和最终断裂。本章模拟单轴拉伸实验,并介绍界面的基本操作方法。数值计算模型示意图如图 1 所示,相关参数如表 1 所示:

图 1 数值计算模型示意图

表 1 材料参数 (采用简单的线弹性本构模型)

Parameters				
Young's modulus (Pa)	10e6			
Poisson's ratio	0.3			

1.1 网格划分

本软件计算所需要的网格需要借助专业网格划分软件完成。借助 Gid 软件 建立模型并 划分网格如图 2 在专业网格划分软件 Gid 中建立模型并划分网格 所示;

		100 C	
Station and State			
	100 C		
		100 C	
		and the second se	

图 2 在专业网格划分软件 Gid 中建立模型并划分网格

1.2 FssiCAS 图形界面操作——前处理

1.2.1 导入网格

用户点击在前处理界面上 Model 树状菜单栏中的 Load Mesh, 在弹出 Choose Abaqus.inp File 窗口中,选择从 Gid 软件中导出的网格文件,双击或点 击打开按钮,可导入几何模型 的网格,如图 3 所示。

在弹出的 Load Mesh 窗口中设置固体节点数和流体单元阶次,在本案例中 固体节点采用四边形八节点二阶单元,不设置流体单元阶次,因此,固体节点数 设置为 8,流体节点阶次设置为 0(即没有流体存在),点击 OK,如图 4 所示。 在工作区中显示几何模型如图 5 所示。

Model Results	son-souctures	POSTProcess				
PreProcess	🔣 Choose GidMesh File					×
Gid Abaqus	$ e \rightarrow v \wedge Cases_Comp_Exten_SimpeShear > 01(2)_C_UniaxialTension v \cup [\pm 01(2)_C_UniaxialTension + v]$					
HyperMesh Gmsh	组织▼ 新建文件夹					• •
Ansys FissiMesh UcadBackground Material LoadBackground Material 1 Material 1 Material 1 Material 1 Material 1 Boundary Conditions Dottom z 0 - Isert x 0 - Isert x 0 - Iright x timehistory Contact - Structure-Solid Hodds Hoddopynamics	 ★ 快速访问 Desktop 下载 文档 第 次档 第 四片 10(2)_C_UniaxialTension 01(2)_E_UniaxialComp 01(2)_E_SimpleShear(ne 04_FssiPRJ OneDrive - Personal 	名称 ■ Results ■ Temp Fig 01(2)_C_UniaxialTension.fssi ■ DisTimeHistory.bxt ■ MeshForFssi ● 卸油公仰实验.docx e	(秋)日期 2024/10/25 16:44 2024/10/25 16:43 2024/10/25 16:66 2023/9/6 17:32 2023/9/6 17:17 2024/10/26 15:28	类型 文件夹 FSSICAS 文本文档 文体 Microsoft Word	0 KB 30 KB 54 KB 55 KB	
No Hydro No Hydro Stokes Wave GrD AeroDynamics FAST Earthquake No Rathquake Sinusoidal function Earthquake Sinusoidal function Earthquake	>> ● 助电版 >	MeshForFssi		×	All Files (*) 打开(Q)	

图 3 导入几何模型的网格文件

🔣 Load Mesh	I		?	×
	Solid Node	Element Type	Fluid Order	
Material-1	8	Solid Element	0	▼
Reduced In	tegration		Ok	

图 4 设置固体节点数和流体单元阶次

注: 这里通常规定从第三方网格画分软件导入的网格系统单元上的固体节点的 阶次不能改变, 由软件自行判断固体节点的阶次。从 GID、Hypermesh Solidworks 等建模软件导出的网 格中固体节点为几阶, 那么导入 FSSI-CAS 软件后固体节点还是原阶次, 但可以指定流体单元的阶次, 但是流体单元的阶次, 不能大于同位置固体单元的阶次。

图 5 几何模型的显示

1.2.2 添加边界条件

需要将几何模型的边界条件设置为:底面(z=0)所有节点设置为 z 方向位移固定;背面(y=1)所有节点设置为 y 方向移固定;左侧面(x=0)所有节点设置为 x 移方向固定;右侧面(x=1)所有节点添加位移时程曲线。

点击工具栏 2 中图标 🏹,进入边界选择模式,如图 6 所示;

点击工具栏 2 中图标 🛄,进入单元选择模式,如图 7 所示; 点击键盘

'R'键,开始选择;

图 7 进入单元选择模式

选定相应位置后如图 8,点击鼠标右键,在显示的边界条件下拉菜单中,选择 Displacement—Apply,如图 9所 示;

图 8 选定示意图

F

🖥 Boundar	y Appl	У		×
C Name:	3C-5			
_Constant				
Consta	nt Disp	lacement		
🗌 X Do	f 0			
Y Do	f			
🗹 Z Do	f 0			
Load File				
 Time H 	istory (Displacem	ent File	
🗹 X Do	f		Load File	•
Y Do	f		Load File	
ZDo	f		Load File	
			(Dk

图 9 设置位移固定

设置位移固定后,接下来添加位移时程曲线,选取 x=1 上面所有网格,点击 鼠标右键,在显示的边界条件下拉菜单中,选择 Displacement—Apply,勾选 Time History Displacement,勾选 x 方向添加相应位移时程曲线,如图 10 所示。

在右侧的伸缩区中勾选 Show Boundary Condition,如图 11 所示,可以检查 是否正确添 加边界条件,该案例添加的边界条件如图 12 所示;

图 11 在右侧的伸缩区中勾选 Show Boundary Condition

图 12 该案例添加的边界条件

1.2.3 设置材料参数

点击 PreProcess-Materials 设置材料参数,相关材料参数如图 13 所示;

🔊 Material 1		_	\times
Material Name	Material 1		
Constitutive Model:	Elastic		•
Succeed	No Succeed		•
Initial Stress Tensile	Yes		
Global Stress Integration:			_
Stress Integration Algorithm:	Default 🔻		
Constitutive Model Parameters:			
Young's Modulus (Pa): 10e6			
Poisson's Ratio : 0.3			
Damping Model Parameters:			
Damping Model: ELAS	TIC		
Young's Modulus (Pa): 0	Poisson's Ratio: 0		
Damping Coefficient Direct	•		
α:	β:		
Material Parameters:			
Solid Particle Bulk Modulus (Pa): 1.0E+20			
Granular Density (kg/m³): 2700			
Void Ratio: 0			
L			ОК

图 13 设置材料参数

1.2.4 水动力边界条件设置

由于本案例不考虑流体节点,不设置水动力边界条件。因此,设置耦合方式为非耦合,不考虑波浪动力,点击 FssiCAS—Preprocess—Loads-Hydrodynamics—No Hydro,如图 14 所示;

图 14 水动力边界条件设置

1.2.5 设置求解器类型和时间步

点击前处理界面上 Model 树状菜单栏里的 Solver,在弹出的对话框中设置 求解器类型,求解器设置为 Static (Static 表示与时间无关的静态),注意设置几 何非线性开关 Geometrical Nonlinearity 选择 On,并进行相关属性参数设置,如

图 15 所示;

Solver:	Static		Drained	
Analysis Module:	Traditiona	I Implic	it FEM	
Sparse Solver Type:	Direct Spa	rse Solv	rer (LU)	1
Parameters				
Geometrical Nonlinearity		Dn		V
Rotation	Non-F	Rotation	ı	
Stiffness Matrix Symmetry	1	٩o		▼
Iterative Convergence Criteria	1e-05			
Property Updation	Non-L	Jpdatec	1	▼
Analysis Type		3D		•
Displacement Succeed	١	/es		▼
NBFGS		1		•
Parallel Method	CPU C)penMP	L)	
CPU Parallel Threads	4			

图 15 设置求解器相关参数

在前处理界面上的 Model 树状菜单栏的 Time Step 中,点击 Sub_ Step1, 设置求解时间步数为1000s,时间步长为1s,更新坐标,更新刚度矩阵,每步最大迭代 10 次,不输出重启文件,每 1s 输出分布图结果,每 1s 输出时程结果,输出高斯点上结果,如图图 16 所示;

ŀ	Time Step ? X							
	Sub Step 1							
	Parameter		_					
	Simulation Time (s)	1000						
	Start Time of Current Step (s)	0						
	Interval for Time Steps (s)	1						
	Interval for Updating Coordinate (s)	1						
	Interval for Updating Global Stiffness Matrix (s)	1						
	Maximum Iterations	10						
	Restart File Output Interval (s)	9999						
	Results File Output Interval (s)	1						
	Results Output	On Nodes 🔻						
	State Variables Output	No 🔻						
	Results Sequence	Manage						
	Results Format	Binary 🔻						
	History Output Interval (s)	1						
	α	0.6						
	β1	0.605						
	β2	0.6						
	Crea	ate Delete						

图 16 时间步设置

注:1.更新坐标的数值大于总时间数值表示不更新,反之表示更新;2.更新 刚度矩阵的数值大于总时间数值表示不更新,反之表示更新;3.输出重启文件 的数值大于总时间数值表示不输出,反之表示输出,但是无论如何,程序 结束 时都会输出一次;4.必须满足条件: $\alpha \ge 0.5$ 、0.5 $\beta 1 \ge \beta 2 \ge$;

1.2.6 设置初始条件

在前处理界面上 Model 树状菜单栏中,点击 Initial State,设置起始时间为 0s,点击 OK,即可完成初始状态设置,如图 17 所示;

Uniform Acceleration Field	🔣 Initial State 🛛 🗙
Solver Solver Step 1 Sub_Step 1 Time History	Solver: Static Type: Generate Initial File
Computation FSSI-W FSSI-NW	Set initial state to Zero Yes Ves Ves

图 17 设置初始状态

1.2.7 计算并保存

点击点击在前处理界面上 Model 树状菜单栏里 Computaton 中的 FSSI-W, 开始计算, 如图 18 所示。

图 18 开始计算

si Monitor	_	\times
Solver Screen TimeHistory		
LIteration: 1 Error for Each Phase: 7.2E-07 1.0E-05 1.0E-05 1.0E-05 Total Number Of Iterations : 1090 Average Number Of Iterations : 1.1 Analytical Step: 988 Converged at Time : 16:33:10 RunTime: 988.000 CumulativeTime: 988.000		^
Start Assembling CSR Matrix With 4 Thread Succuss X Time Used in Forming CSR Matrix is : 0.03 Seco Image: Complete in the calculation is complete. Start LU Decomposing With 4 Threads Image: Complete in the calculation is complete.		
Solution process at this step is completed at: 16:3: OK		
Begin To Save Final File		
Displacement Order: 0		
FssiCAS For Windows OS Program Name: FssiCAS		~

图 19 计算结束

1.3 FssiCAS 图形界面操作——后处理

用户点击树状菜单栏上的 Results,即可进入后处理界面。

1.3.1 加载文件

点击在后处理界面上 Results 树状菜单栏中的 Open Results File, 在弹出的 窗口中点击 Soil Results Files Director—Load Files, 选择需要处理的结果文件夹, 即可进入后处理阶段, 如图 20 所示;

Model Results	Soil-Structures	PostProcess					
PostProcess Open Result Files Load Initial Files	Mode Note						>
Soil & Structures	🔣 Choose a Soil Results File						×
- Displacement - Effective Stress	← → ∨ ↑ 📜 « 01(2)_C_U	niaxial⊤ension → Re	sults > Soil_Model >		~ Ū	在 Soil_Model	中搜索 ク
Strain Pore Pressure	组织▼ 新建文件夹						· · ?
- Saturation - Seepage Velocity	▲ 从违法问	名称	^	修改日期	类型	大小	
Seepage Force	Desktop *	📜 Multiple		2024/10/26 16:32	文件夹		
Acceleration	🖡 下载 🛛 🖈						
Liquefaction Potential	🖹 文档 🛛 🖈						
- Stress Based - Pore Pressure Based	📰 図片 🛛 🖈						
Seepage Based	01(2)_C_UniaxialTension						
	01(2)_D_UniaxialComp						
DualSPHysics	01(2)_E_SimpleShear(nee						
Velocity	04_FssiPRJ						
Fluent	🔷 OneDrive - Personal						
- A History Plot	此电脑						
	🥧 dragon (H:)						
	🥩 网络						
	文件夹: Mu	tiple					
						选择文件夹	取消
	••*		X	(m)		-0	
	图 20)打开结:	果文件				

1.3.2 查看结果分布图

选择后处理 Display Option-Scale Factor,设置 Deformation Scale Factor 查看 变形情况,本案例结果分布图如图 22-图 27 所示;

 Display Option 			
Monitoring Point	\checkmark		
Solid Model	\checkmark		Solid Mesh 🗌
Deformed Solid Me	sh		
Solid Vector			
Solid Streamlines			
Solid Feature Edges	;		
Wave Model			Wave Mesh 📃
STL Model			
Wave Vector			
Wave Streamlines			
Remove Air Don	nain		
Threshold of VOF:			0.5
✓ Scale Factor			
Deformation Scale	e Factor	1	
Glyph Scale Factor	r	0.25	5
Number of Arrow	s	100	0
			Apply

图 21 设置查看变形情况

图 22 x 方向位移分布图

图 27 有效应力分布图

单轴压缩实验

单轴压缩实验是一种用于测定材料抗压强度和其他力学性能的基本试验方法。在该实验中,制备的试样通常为圆柱形或立方形,通过施加沿其长度方向的压缩荷载,观察材料在压缩过程中发生的变形和最终失效。本章模拟单轴压缩实验,并介绍界面的基本操作方法。数值计算模型示意图如图 1 所示,相关参数如表 1 所示:

图 1 数值计算模型示意图

表 1 材料参数 (采用简单的线弹性本构模型)

Parameters				
Young's modulus (Pa)	10e6			
Poisson's ratio	0.3			

1.1 网格划分

本软件计算所需要的网格需要借助专业网格划分软件完成。借助 Gid 软件 建立模型并 划分网格如图 2 在专业网格划分软件 Gid 中建立模型并划分网格 所示;

	·	 	
14 A.			
and the second			
	and the second		
		and the second se	

图 2 在专业网格划分软件 Gid 中建立模型并划分网格

1.2 FssiCAS 图形界面操作——前处理

1.2.1 导入网格

用户点击在前处理界面上 Model 树状菜单栏中的 Load Mesh, 在弹出 Choose Abaqus.inp File 窗口中,选择从 Gid 软件中导出的网格文件,双击或点 击打开按钮,可导入几何模型 的网格,如图 3 所示。

在弹出的 Load Mesh 窗口中设置固体节点数和流体单元阶次,在本案例中 固体节点采用四边形八节点二阶单元,不设置流体单元阶次,因此,固体节点数 设置为 8,流体节点阶次设置为 0(即没有流体存在),点击 OK,如图 4 所示。 在工作区中显示几何模型如图 5 所示。

Model Results	Soil-Structures	PostProcess				
PreProcess						
⊖ ⊞ LoadMesh	ose GidMesh File					×
- Gid Call - Abaqus - HyperMesh ← → - Gmsh		np_Exten_SimpeShear > 01(2)_D_Uniax	dalComp >	~ Ŭ	在01(2)_D_Uniaxial	Comp 🔎
— Ansys 组织 -	新建文件夹					- 🔟 🕜
© FssiMesh © √ LoadBackground → t#	凄访问	名称 ^	修改日期	类型	大小	
- 💑 Outer Boundary	Desktern	Results	2024/10/25 16:56	文件夹		
🖻 🔽 Inner Boundary 📃 🗖	Jesktop #	Temp	2024/10/25 16:56	文件夹		
	下戰 📌	5 01(2) D UniaxialComp. fssi	2024/10/25 16:59	FSSICAS	0 KB	
Material 1	文档 📌	01(2) D. UniavialComp.fssi	2024/10/26 13:57	ESSICAS	0 KB	
😑 Boundary Conditions 💦 📰 🛛	図片 オ	DisTimeHistory by	2022/0/5 17:41	रेक्र रेक्ष	21 KB	
- bottom z 0	01(2) C UniaxialTension	MeebEorEesi	2023/9/6 17:47	★	5.4.KB	
leftx 0	D1(2)_D_UniaxialComp	● 单轴压缩实验.docx	2024/10/26 16:57	Microsoft Word .	1,230 KB	
Contact	01(2)_E_SimpleShear(nee					
Structure-Solid	04_FssiPRJ					
HydroDynamics Or No Hydro	neDrive - Personal					
Stokes Wave しません	电脑					
B- AeroDynamics → dr	agon (H:)					
Fluctuating Wind	络					
Earthquake Sinusoidal Function Earthquake Library National Standard	文件名(N): N	MeshForFssi		~	All Files (*) 打开(Q)	~ 取消
UserDefined						

图 3 导入几何模型的网格文件

🔣 Load Mesh	I		?	×
	Solid Node	Element Type	Fluid Order	
Material-1	8	Solid Element	0	▼
Reduced In	tegration		Ok	

图 4 设置固体节点数和流体单元阶次

注: 这里通常规定从第三方网格画分软件导入的网格系统单元上的固体节点的 阶次不能改变, 由软件自行判断固体节点的阶次。从 GID、Hypermesh Solidworks 等建模软件导出的网 格中固体节点为几阶, 那么导入 FSSI-CAS 软件后固体节点还是原阶次, 但可以指定流体单元的阶次, 但是流体单元的阶次, 不能大于同位置固体单元的阶次。

图 5 几何模型的显示

1.2.2 添加边界条件

需要将几何模型的边界条件设置为:底面(z=0)所有节点设置为 z 方向位移固定;背面(y=1)所有节点设置为 y 方向移固定;左侧面(x=0)所有节点设置为 x 移方向固定;右侧面(x=1)所有节点添加位移时程曲线。

点击工具栏 2 中图标 🏹,进入边界选择模式,如图 6 所示;

点击工具栏 2 中图标 🛄,进入单元选择模式,如图 7 所示; 点击键盘

'R'键,开始选择;

图 7 进入单元选择模式

选定相应位置后如图 8,点击鼠标右键,在显示的边界条件下拉菜单中,选择 Displacement—Apply,如图 9 所示;

图 8 选定示意图

F

🖁 Boundary 🤉	Apply	×
C Name: BC	-5	
Constant		
Constant	Displacement	
🗌 X Dof	0	
🗌 Y Dof	0	
🗹 Z Dof	0	
Load File		
○ Time Hist	tory Displacement File	
🗹 X Dof	Load File	
V Dof	Load File	
ZDof	Load File	
	Ok	

图 9 设置位移固定

设置位移固定后,接下来添加位移时程曲线,选取 x=1 上面所有网格,点击 鼠标右键,在显示的边界条件下拉菜单中,选择 Displacement—Apply,勾选 Time History Displacement,勾选 x 方向添加相应位移时程曲线,如图 10 所示。

在右侧的伸缩区中勾选 Show Boundary Condition,如图 11 所示,可以检查 是否正确添加边界条件,该案例添加的边界条件如图 12 所示;

500 600 Time (s)

图 10 添加位移时程曲线

700 800 900 1000

OK Cancel

-0.35 -0.4 -0.45 -0.5 -0.5

100 200 300 400

Mesh Visualizati	on
Solid Mesh	 Fluid Mesh
⊖ Geometric	module I 1
Show Nodes	Show Mesh Edge
Show Boundary	Condition
Zoom Factor	1
Show Monitoring	ig Points

图 11 在右侧的伸缩区中勾选 Show Boundary Condition

1.2.3 设置材料参数

点击 PreProcess-Materials 设置材料参数,相关材料参数如图 13 所示;

🔊 Material 1		_	\times
Material Name	Material 1		
Constitutive Model:	Elastic		•
Succeed	No Succeed		•
Initial Stress Tensile	Yes		
Global Stress Integration:			_
Stress Integration Algorithm:	Default 🔻		
Constitutive Model Parameters:			
Young's Modulus (Pa): 10e6			
Poisson's Ratio : 0.3			
Damping Model Parameters:			
Damping Model: ELAS	TIC		
Young's Modulus (Pa): 0	Poisson's Ratio: 0		
Damping Coefficient Direct	•		
α:	β:		
Material Parameters:			
Solid Particle Bulk Modulus (Pa): 1.0E+20			
Granular Density (kg/m³): 2700			
Void Ratio: 0			
L			ОК

图 13 设置材料参数

1.2.4 水动力边界条件设置

由于本案例不考虑流体节点,不设置水动力边界条件。因此,设置耦合方式为非耦合,不考虑波浪动力,点击 FssiCAS—Preprocess—Loads-Hydrodynamics—No Hydro,如图 14 所示;

图 14 水动力边界条件设置

1.2.5 设置求解器类型和时间步

点击前处理界面上 Model 树状菜单栏里的 Solver,在弹出的对话框中设置 求解器类型,求 解器设置为 Static (Static 表示与时间无关的静态),注意设置 几何非线性开关 Geometrical Nonlinearity 选择 On,并进行相关属性参数设置,

如图 15 所示;

Solver:	Static 🔻 Drained	
Analysis Module:	Traditional Implicit FEM	
Sparse Solver Type:	Direct Sparse Solver (LU)	
— Parameters ———		
Geometrical Nonlinearity	On	▼
Rotation	Non-Rotation	▼
Stiffness Matrix Symmetry	No	▼
Iterative Convergence Criteria	1e-05	
Property Updation	Non-Updated	▼
Analysis Type	3D	▼
Displacement Succeed	Yes	▼
NBFGS	1	V
Parallel Method	CPU OpenMP	▼
CPU Parallel Threads	4	

图 15 设置求解器相关参数

在前处理界面上的 Model 树状菜单栏的 Time Step 中,点击 Sub_ Step1, 设置求解时间步数为1000s,时间步长为1s,更新坐标,更新刚度矩阵,每步最大迭代 10 次,不输出重启文件,每 1s 输出分布图结果,每 1s 输出时程结果,输出高斯点上结果,如图图 16 所示;

l	🚮 Time Step				×
	Sub Step	1			
	-Parameter-				
	Simulation Tin	ne (s)	1000		
	Start Time of (Current Step (s)	0		
	Interval for Tin	ne Steps (s)	1		
	Interval for Up	dating Coordinate (s)	1		
	Interval for Up	dating Global Stiffness Matrix (s)	1		
	Maximum Iter	ations	10		
	Restart File Output Interval (s)				
	Results File Ou	tput Interval (s)	1		
	Results Output		On	Nodes	
	State Variable	Output		No	
	Results Sequer	nce	N	lanage	
	Results Forma	:	Bi	inary	
	History Output	: Interval (s)	1		
	α		0.6		
	β1		0.605		
	β2		0.6		
	L	Cre	ate	Dele	ete

注:1.更新坐标的数值大于总时间数值表示不更新,反之表示更新; 2.更新 刚度矩阵的数值大于总时间数值表示不更新,反之表示更新; 3.输出重启文件 的数值大于总时间数值表示不输出,反之表示输出,但是无论如何,程序结束时都会输出一次; 4.必须满足条件: $\alpha \ge 0.5$ 、 0.5 $\beta 1 \ge \beta 2 \ge$;

1.2.6 设置初始条件

在前处理界面上 Model 树状菜单栏中,点击 Initial State,设置起始时间为 0s,点击 OK,即可完成初始状态设置,如图 17 所示;

Uniform Acceleration Field	🔣 Initial State	×
Solver Solver Solver Sub_Step 1 Sub_Step 1 Sub_St	Solver: Static Type: Generate Initial File Set initial state to Zero Yes	UK OK

图 17 设置初始状态

1.2.7 计算并保存

点击点击在前处理界面上 Model 树状菜单栏里 Computaton 中的 FSSI-W, 开始计算, 如图 18 所示。

图 18 开始计算

si Monitor	_	\times
Solver Screen TimeHistory		
LIteration: 1 Error for Each Phase: 7.2E-07 1.0E-05 1.0E-05 1.0E-05 Total Number Of Iterations : 1090 Average Number Of Iterations : 1.1 Analytical Step: 988 Converged at Time : 16:33:10 RunTime: 988.000 CumulativeTime: 988.000		^
Start Assembling CSR Matrix With 4 Thread Succuss X Time Used in Forming CSR Matrix is : 0.03 Seco Image: Complete in the calculation is complete. Start LU Decomposing With 4 Threads Image: Complete in the calculation is complete.		
Solution process at this step is completed at: 16:3: OK		
Begin To Save Final File		
Displacement Order: 0		
FssiCAS For Windows OS Program Name: FssiCAS		~

图 19 计算结束

1.3 FssiCAS 图形界面操作——后处理

用户点击树状菜单栏上的 Results,即可进入后处理界面。

1.3.1 加载文件

点击在后处理界面上 Results 树状菜单栏中的 Open Results File, 在弹出的 窗口中点击 Soil Results Files Director—Load Files, 选择需要处理的结果文件夹, 即可进入后处理阶段, 如图 20 所示;

Model Results	Soil-Structures	PostProcess					
PostProcess Open Result Files Load Initial Files	Mode Note						>
Soil & Structures	🔣 Choose a Soil Results File						×
- Displacement - Effective Stress	← → ∨ ↑ 📜 « 01(2)_C_U	niaxial⊤ension → Re	sults > Soil_Model >		~ Ū	在 Soil_Model	中搜索 ク
Strain Pore Pressure	组织▼ 新建文件夹						· · ?
- Saturation - Seepage Velocity	▲ 从违法问	名称	^	修改日期	类型	大小	
Seepage Force	Desktop *	📜 Multiple		2024/10/26 16:32	文件夹		
Acceleration	🖡 下载 🛛 🖈						
Liquefaction Potential	🖹 文档 🛛 🖈						
	📰 图片 🛛 🖈						
Seepage Based	01(2)_C_UniaxialTension						
	01(2)_D_UniaxialComp						
DualSPHysics	01(2)_E_SimpleShear(nee						
Velocity	04_FssiPRJ						
Fluent	🔷 OneDrive - Personal						
- A History Plot	此电脑						
	🥧 dragon (H:)						
	🥩 网络						
	文件夹: Mu	tiple					
						选择文件夹	取消
	••*		X	(m)		-0	
	图 20	0打开结:	果文件				

1.3.2 查看结果分布图

选择后处理 Display Option-Scale Factor,设置 Deformation Scale Factor 查看 变形情况,本案例结果分布图

 Display Option 	
Monitoring Point 🗹	
Solid Model 🗹	Solid Mesh 📃
Deformed Solid Mesh	
Solid Vector	
Solid Streamlines	
Solid Feature Edges 🗌	
Wave Model	Wave Mesh
STL Model	
Wave Vector	
Wave Streamlines	
Remove Air Domain	
Threshold of VOF:	0.5
✓ Scale Factor	
Deformation Scale Easter	1
Deformation Scale Factor	
Glyph Scale Factor	0.25
Number of Arrows	1000
	Apply
	Apply

图 21 设置查看变形情况

图 22 x 方向位移分布图

图 23 y 方向位移分布图

图 24 z 方向位移分布图

图 25 位移矢量分布图

图 26 位移分布图

图 27 有效应力分布图

简单剪切实验

简单剪切实验是一种用于测定材料剪切强度和其他力学性能的基本试验方法。在该实验中,制备的试样通常为矩形或正方形,通过施加沿试样平面方向的 剪切荷载,观察材料在剪切过程中发生的变形和最终失效。本章模拟简单剪切实 验,并介绍界面的基本操作方法。数值计算模型示意图如图 1 所示,相关参数如 表 1 所示:

图 1 数值计算模型示意图

表 1 材料参数 (采用简单的线弹性本构模型)

Parameters					
Young's modulus (Pa)	10e6				
Poisson's ratio	0.3				

1.1 网格划分

本软件计算所需要的网格需要借助专业网格划分软件完成。借助 Gid 软件 建立模型并 划分网格如图 2 在专业网格划分软件 Gid 中建立模型并划分网格 所示;

		and the second second

图 2 在专业网格划分软件 Gid 中建立模型并划分网格

1.2 FssiCAS 图形界面操作——前处理

1.2.1 导入网格

用户点击在前处理界面上 Model 树状菜单栏中的 Load Mesh, 在弹出 Choose Abaqus.inp File 窗口中,选择从 Gid 软件中导出的网格文件,双击或点 击打开按钮,可导入几何模型 的网格,如图 3 所示。

在弹出的 Load Mesh 窗口中设置固体节点数和流体单元阶次,在本案例中 固体节点采用四边形八节点二阶单元,不设置流体单元阶次,因此,固体节点数 设置为 8,流体节点阶次设置为 0(即没有流体存在),点击 OK,如图 4 所示。 在工作区中显示几何模型如图 5 所示。

PreProcess	🔚 Choose GidMesh File						×
Gid	← → × ↑ L « Cases Co	mp Exten SimpeShear > Cases Comp Ex	ten SimpeShear > (1/2) E	SimpleShear(need)	2 × Č)	在 01(2) E. SimpleShear(ne)	0
Abaqus HyperMesh Gmsh	组织 * 新建文件夹					E • .	0
Angys FisMish CouldBackground CouldBackground CouldBackground CouldBackground Material Material Material Material Powers Couldback Material Couldback Startis Startis Couldback HydroOphamics FieldCantion Sinuscide Function Sinuscide Fun		€48 ************************************	(橋政日和) 2024/10/2420/42 2024/10/2420-42 2024/10/2420-58 2023/9/619-30 2023/9/619-30 2023/9/617417	供型 文件央 文件央 FSSICAS 文本文治 文件	жи о ка 23 ка 54 ка		i a r
No Acceleration Field Uniform Acceleration Field Centrifugal Acceleration Field Solver	文件名(1):	MeshForFssi			×	All Files (*) 打开(Q) 取消	~

图 3 导入几何模型的网格文件

🔣 Load Mesh	I		?	×
	Solid Node	Element Type	Fluid Order	
Material-1	8	Solid Element	0	▼
Reduced In	tegration		Ok	

图 4 设置固体节点数和流体单元阶次

注: 这里通常规定从第三方网格画分软件导入的网格系统单元上的固体节点的 阶次不能改变, 由软件自行判断固体节点的阶次。从 GID、Hypermesh Solidworks 等建模软件导出的网 格中固体节点为几阶, 那么导入 FSSI-CAS 软件后固体节点还是原阶次, 但可以指定流体单元的阶次, 但是流体单元的阶次, 不能大于同位置固体单元的阶次。

 	<u> </u>	

图 5 几何模型的显示

1.2.2 添加边界条件

需要将几何模型的边界条件设置为:底面(z=0)所有节点设置为 xyz 方向 位移固定;正面(y=0)、背面(y=1)以及顶面(z=1)所有节点设置为 yz 方向 移固定;左侧面(x=0)和右侧面(x=1)添加周期性边界;顶面(z=1)所有节 点添加位移时程曲线。

点击工具栏 2 中图标 🏹,进入边界选择模式,如图 6 所示;

点击工具栏 2 中图标 Ⅲ,进入单元选择模式,如图 7 所示; 点击键盘 'R'键,开始选择;

	V = B	f 🗗 🕄 🚯	S S	tep 1 🔷 🔻	iep step step 쓶
	图 6 进入证	边界选择模式			
i 🖻 🕞 💷 🌓 i 🎹 🖽 🖽 🖪					
		r 🛨 ? 💾 🖽 /	📕 🚽 St	ep 1 🛛 🔻 💐	ep Step Step 🔛

选定相应位置后如图 8, 点击鼠标右键, 在显示的边界条件下拉菜单中, 选

择 Displacement—Apply, 如图 9 所 示;

图 8 选定示意图

🔣 Boundary A	xpply ×
BC Name: BC-	5
Constant	
Constant [Displacement
🗌 X Dof	0
🗌 Y Dof	0
🗹 Z Dof	0
Load File	ory Displacement File
🗹 X Dof	Load File
V Dof	Load File
Z Dof	Load File
	Ok

图 9 设置位移固定

设置位移固定后,接下来添加位移时程曲线,选取 x=1 上面所有网格,点击 鼠标右键,在显示的边界条件下拉菜单中,选择 Displacement—Apply,勾选 Time History Displacement,勾选 x 方向添加相应位移时程曲线,如图 10 所示。

Boundary Apply X					✓ Pre	Process Options
BC Name: BC-5	Choose Time History File					×
Constant [\sim \rightarrow \sim \uparrow \downarrow « Cases	_Comp_Exten_SimpeShear > 01(2)_C_Unia:	xialTension >	~ Ū	在01(2)_C_Uniaxi	alTension 🔎
 Constant Displacement 	组织 ▼ 新建文件夹				1	- 🔳 🕜
X Dof 0	4. 快速演员	名称	修改日期	类型	大小	
		Results	2024/10/25 16:44	文件夹		
	Tan	📜 Temp	2024/10/25 16:43	文件夹		
Z Dof 0	▼ 1°3%	Fssi 01(2)_C_UniaxialTension.fssi	2024/10/25 16:06	FSSICAS	0 KB	
		DisTimeHistory.txt	2023/9/6 17:32	文本文档	30 KB	
	■ 图片	MeshForFssi	2023/9/6 17:17	文件	5.4 KB	
Load File	01(2)_C_UniaxialTensic	on 📴 单轴拉伸实验.docx	2024/10/26 15:54	Microsoft Word .	197 KB	
Time History Displacement File	01(2)_D_UniaxialComp					
	📜 01(2)_E_SimpleShear(r	ee				
▼ X Dof	04_FssiPRJ					
Load File	loneDrive - Personal					
V Dof	🍤 此电脑					
	🥪 dragon (H:)					
Z Dof	🧼 网络					
	文件名①	l): DisTimeHistory.txt		~	All Files (*)	~
Ok					打开(Q)	取消
Jantity	The second				1	

图 10 添加位移时程曲线

接下来设置周期性边界,首先选定右侧面(x=1),点击鼠标右键,在显示的 边界条件下拉菜单中,选择 Periodic Condiction—Apply 如,而后在弹出对话框 点击 ok,再选择左侧面(x=0)选中后点击回车即设置成功,如图 11 图 12 所 示;

FisiCAS V3.3.4							- 8
File UserDefined Support							
🗅 🗃 💾 🚺 🗮 🖽 🖽 💋 🖬	5 BP BP 🔁 🔂 🔒	Step 1 🛛 🔻 🏍	😼 🧐 😂 🛛 CPUs 🤞 🔹 Allocated Memory :	ize(MB): 10 Project: top/C	Cases_Comp_Exten_SimpeShear/C	Cases_Comp_Exten_Simp	eShear/01_E_SimpleShea 🔻
Model Results	Soil-1	Structures PostProce	055				
PreProcess						✓ PreProcess Optio	ns
- Gid	Modeo					Mesh Visualization	n
— Abaqus	+***-**	©.				Solid Mesh	Fluid Mesh
- HyperMesh - Gmsh		- <mark>S</mark> SI				🗄 🗹 Geometric m	odule
- Ansys	+XX_					🗌 🗹 Mat001	
- 🗞 Outer Boundary	+¤Z-¤Z						
Mat001	EaWa						
B- Materials	200						
- Mat001	W _N E _N						
BC001_Surface_Top_DisYZ0							
 BC002_Surface_Top_DisX_Time BC003_Surface_Front_DisYZ0 							
BC004_Surface_Back_DisYZ0							
BC005_Surface_Bottom_DisXYZ0 Declarate						Show Noder	Show Mark Edge
 HydroDynamics 							C Show mean bage
- 🗮 No Hydro - 🐋 Stokes Wave						Boundary All	Boundary
- 🔁 CFD				🛄 Displacement	•	Show Boundary C	ondition
AeroDynamics Electuating Wind				🕂 Force	•	Zoom Factor	1
- FAST				Viscoelastic Boundary	•	Show Monitoring	Points
Earthquake No Farthquake				← Periodic Condition	Apply		
- Sinusoidal Function				Eluctuation Wind Pressure			
 Earthquake Library National Standard 				UserDefined on Solid Elem	ients 🕨		
UserDefined							
No Acceleration Field		¢ I					
- Uniform Acceleration Field		X Y					
- Centringal Acceleration Held							
B- G Time Step							
Enter Command Here						L	
Liner Command Here							
Initial Finished			Elements: 500 Nodes: 726	S-Nodes: 726 F-Nodes: 0 Eleme	ent No.: Node No.: Material :	All S - F Type : Solid	Boundary: 0 Select Type: Eler

图 11 添加周期性边界(选择左侧面)

Ē	si inform	mation							×
	Pleas the Er	e Select hter key.	the Secc	nd Part	of the Pe	riodic Co	ondition,	then pre	255
							[OK	

图 12 弹出对话框

在右侧的伸缩区中勾选 Show Boundary Condition,如图 13 所示,可以检查 是否正确添加边界条件,该案例添加的边界条件如图 14 所示;

 PreProcess Option 	ons
Mesh Visualizatio	n
Solid Mesh	O Fluid Mesh
🗄 🗹 Geometric n	nodule 1
Show Nodes Boundary All	Show Mesh Edge
Show Boundary	Condition
Zoom Factor	1
	rons

图 13 在右侧的伸缩区中勾选 Show Boundary Condition

图 14 该案例添加的边界条件

1.2.3 设置材料参数

点击 PreProcess-Materials 设置材料参数,相关材料参数如图 15 所示;

👷 Material 1	—	\times
Material Name	Material 1	
Constitutive Model:	Elastic	
Succeed	No Succeed	▼
Initial Stress Tensile	Yes	
Global Stress Integration:		
Stress Integration Algorithm:	Default 🔻	
Constitutive Model Parameters:		_
Young's Modulus (Pa): 10e6		
Poisson's Ratio : 0.3		
Damping Model Parameters:		_
Damping Model: E	LASTIC	
Young's Modulus (Pa): 0	Poisson's Ratio: 0	
Damping Coefficient Direc	t 🔻	
α:	β:	
Material Parameters:		
Solid Particle Bulk Modulus (Pa): 1.0E+20		
Granular Density (kg/m³): 2700		
Void Ratio:		
L		ОК

图 15 设置材料参数

1.2.4 水动力边界条件设置

由于本案例不考虑流体节点,不设置水动力边界条件。因此,设置耦合方式

为非耦合,不考虑波浪动力,点击 FssiCAS—Preprocess—Loads-Hydrodynamics— No Hydro,如图 16 所示;

图 16 水动力边界条件设置

1.2.5 设置求解器类型和时间步

点击前处理界面上 Model 树状菜单栏里的 Solver,在弹出的对话框中设置 求解器类型,求 解器设置为 Static (Static 表示与时间无关的静态),注意设置 几何非线性开关 Geometrical Nonlinearity 选择 On,并进行相关属性参数设置, 如图 17 所示;

Solver:	Static 💌	Drained		
Analysis Module:	Traditional Imp	licit FEM		
Sparse Solver Type:	Direct Sparse So	olver (LU)		
Parameters				
Geometrical Nonlinearity	On		▼	
Rotation	Non-Rotati	on	▼	
Stiffness Matrix Symmetry	No		▼	
Iterative Convergence Criteria	1e-05			
Property Updation	Non-Updat	ed	▼	
Analysis Type	3D		▼	
Displacement Succeed	Yes		▼	
NBFGS	1			
Parallel Method	CPU OpenMP			
CPU Parallel Threads	4			

图 17 设置求解器相关参数

在前处理界面上的 Model 树状菜单栏的 Time Step 中,点击 Sub_ Step1, 设置求解时间步数为1000s,时间步长为1s,更新坐标,更新刚度矩阵,每步最 大迭代 10 次,不输出重启文件,每 1s 输出分布图结果,每 1s 输出时程结果, 输出高斯点上结果,如图图 18 所示;

F	si Time Step	? ×			
5	Sub Step 1				
,	Parameter				
	Simulation Time (s)	750			
	Start Time of Current Step (s)	0			
	Interval for Time Steps (s)	0.1			
	Interval for Updating Coordinate (s)	0.1			
	Interval for Updating Global Stiffness Matrix $\langle s \rangle$	0.1			
	Maximum Iterations	2			
	Restart File Output Interval (s)	1001			
	Results File Output Interval (s)	1			
	Results Output	On Nodes 🔻			
	State Variables Output	No 🔻			
	Results Sequence	Manage			
	Results Format	Binary 🔻			
	History Output Interval (s)	1			
	α	0.6			
	β1	0.605			
	β2	0.6			
ľ	Crea	ate Delete			

图 18 时间步设置

注:1.更新坐标的数值大于总时间数值表示不更新,反之表示更新;2.更新 刚度矩阵的数值大于总时间数值表示不更新,反之表示更新;3.输出重启文件 的数值大于总时间数值表示不输出,反之表示输出,但是无论如何,程序 结束 时都会输出一次;4.必须满足条件: $\alpha \ge 0.5$ 、0.5 $\beta 1 \ge \beta 2 \ge$;

1.2.6 设置初始条件

在前处理界面上 Model 树状菜单栏中,点击 Initial State,设置起始时间为 0s,点击 OK,即可完成初始状态设置,如图 19 所示;

Uniform Acceleration Field	🔣 Initial State 🛛 🗙
Solver Solver Step 1 Sub_Step 1 Sub_Step 1 Sub_Step 1 Sub_Step 1	Solver: Static Type: Generate Initial File 💌
Computation FSSI-W FSSI-NW	Set initial state to Zero Yes Ves Ok

图 19 设置初始状态

1.2.7 计算并保存

点击点击在前处理界面上 Model 树状菜单栏里 Computaton 中的 FSSI-W, 开始计算, 如图 20 所示。

图 20 开始计算

Monitor	-	×
Solver Screen TimeHistory		
I_Iteration: 1 Error for Each Phase: 7.2E-07 1.0E-05 1.0E-05 1.0E-05 Total Number Of Iterations : 1090 Average Number Of Iterations : 1.1 Analytical Step: 988 Converged at Time : 16:33:10 RunTime: 988.000 CumulativeTime: 988.000		 ^
Start Assembling CSR Matrix With 4 Thread Succuss ×		
Solution process at this step is completed at: 16:33		
Begin To Save Final File		
Displacement Order: 0		
FssiCAS For Windows OS Program Name: FssiCAS		>

图 21 计算结束

1.3 FssiCAS 图形界面操作——后处理

用户点击树状菜单栏上的 Results,即可进入后处理界面。

1.3.1 加载文件

点击在后处理界面上 Results 树状菜单栏中的 Open Results File, 在弹出的 窗口中点击 Soil Results Files Director—Load Files, 选择需要处理的结果文件夹, 即可进入后处理阶段, 如图 22 所示;

Model Results	🔣 Choose a Soil Results File						×
PostProcess Open Result Files	← → ✓ ↑ 📕 « Cases_Comp_Exten_SimpeShear > 01(2),E_SimpleShear(need) > Results > Soil_Model > 🗸 🗸 ঊ Æ Soil_Mod						٩ ٦
- Load Initial Files	组织 ▼ 新建文件夹	组织 マ 新建文件夹					- ?
	组织 ● 新建文件共 ● 快速访问 ● Desktop * ● 下號 * ■ 文档 * ■ 面片 * ■ 面片 * ■ 01(2)_C_Unias/alTension ■ 01(2)_C_Unias/alTension ■ 01(2)_C_Unias/alTension ■ 01(2)_E_SimpleShear(nee ■ 04_FssiPRJ ● CheDrive - Personal ● 世生版 ■ dragon (H:) ● 別焼	名称 】 Multiple	快政日期 2024/10/28 11:18	类型 文件夫	大小	1	i • 0
Soli History Wave History	文件夹 Mu	tiple				选择文件夹	取消

图 22 打开结果文件

1.3.2 查看结果分布图

选择后处理 Display Option-Scale Factor,设置 Deformation Scale Factor 查看

变形情况,本案例结果如图 24-图 27 所示;

 Display Option 					
Monitoring Point 🔽					
Solid Model 🗸	Solid Mesh				
Deformed Solid Mesh					
Solid Vector					
Solid Streamlines					
Solid Feature Edges 🗌					
Wave Model	Wave Mesh				
STL Model					
Wave Vector					
Wave Streamlines					
Remove Air Domain					
Threshold of VOF:	0.5				
✓ Scale Factor					
Deformation Scale Factor	1				
Glyph Scale Factor	0.25				
Number of Arrows	1000				
	Apply				

图 24 x 方向位移图

图 27 有效应力分布图