波浪作用下松散海床的动力响应

本案例用于研究 3 阶 Stokes 波作用下松散海床的动力响应,由于波浪在海床表面产生周期性的压力,因此采用 Pastor-Zienkiewicz-Mark III(PZIII)高级本构模型描述海床砂土的动态力学行为。波浪在砂性海床上方通过,给海床表面施加了周期性动态水压力。海床厚度 h = 20 m,计算长度 L = 400 m。波浪水动力参数为:周期 T = 8.0 s,水深 d = 10 m,波高 H = 3.0 m。模型如图 2-1 所示。

图 2-1 波浪作用下海床发生液化的计算模型图

2.1 FssiCAS 图形界面操作——前处理

2.1.1 导入网格和背景线

点击 FssiCAS—Preprocess—Load Mesh,在弹出的文件选择对话框中选择 Abaqus 输出的网格 文件,双击或点击打开 inp 文件,如图 2-2 所示。

onse of Loose Seabed under Wave Load >

名称	修改日期	类型	大小
Results	2022-4-29 19:04	文件夹	
📕 Temp	2022-4-29 19:04	文件夹	
si Case2 Dynamic Response of Loose S	2022-4-28 19:50	FSSICAS	0 KB
🗋 mesh_seabed	2022-4-2 11:31	文件	232 KB
🗋 mesh_seabed.inp	2022-4-19 11:56	INP 文件	1,349 KB
outBC_seabed.igs	2022-4-19 11:56	IGS 文件	3 KB

图 2-2 导入网格的步骤示意图

在弹出的对话框中设置单元节点阶次,如图 2-3 所示。由于本案例中固体节点采用四边形四节点单元,S.Node 默认为4。因为有流体作用,所以流体节点阶次设置为1,点击 Ok 按钮确认选择。

	Solid Node	Element Type	Fluid Order
material-2	4	Solid Element	1
material-1	4	Solid Element	1

图 2-3 设置流体节点阶次界面

点击 Preprocess—Load Background—Outer Boundary,在弹出的文件选择对话框中选择 Gid 输出的*.igs 背景线文件,双击或点击打开按钮,具体步骤如图 2-4 所示。

or	se of Loose Seabed under Wave Load $ ightarrow$			
	へ 名称	修改日期	类型	大小
	📙 Results	2022-4-29 19:04	文件夹	
	📕 Temp	2022-4-29 19:04	文件夹	
	₣₨ Case2 Dynamic Response of Loose S	2022-4-28 19:50	FSSICAS	0 KB
	🗋 mesh_seabed	2022-4-2 11:31	文件	232 KB
	🗋 mesh_seabed.inp	2022-4-19 11:56	INP 文件	1,349 KB
	outBC_seabed.igs	2022-4-19 11:56	IGS 文件	3 KB

图 2-4 加载外背景线 (Outer Boundary) 的步骤示意图

2.1.2 添加边界条件

本案例在左右两个侧边 (x = 0 m) 和(x = 400 m) 施加 x 方向的约束,在底边 (y = 0 m) 节点 施加 x 与 y 方向的约束。首先,依次点击工具栏中图标 🔽 和 🆽 按钮,进入背景线选择模式。通过点击键盘 'R'键,进入边界选择模式,当单击边界线被选择线变亮时,右击鼠标后设置约束,具体操作如图 2-5 所示。

	Boundary Apply X
	BC Name: 左右x固定 Constant ④ Constant Displacement ☑ X Dof 0 □ Y Dof 0 OK
↑ ^γ	

	😽 Boundary Apply 🛛 🗡
	BC Name: 底部xy固定
	Constant
	Constant Displacement
다. Displacement	✓ Y Dof 0
Pore Pressure	
Force	
Flux	ОК
Distribution Pressure	
Viscoelastic Boundary	
S Fluctuating Wind Pressure	
Flow Velocity	
🔨 Hydrodynamic 🕨	
VserDefined	
Periodic Condition	
×	

图 2-5 选择边界线添加边界条件

2.1.3 添加时程输出

本案例以计算域对称线 x = 200 m 上的结果为典型代表研究波浪作用下海床内的孔隙水压 力、有效应力变化过程和液化特征。为了得到 x = 200 m 上节点和单元的时程结果,首先点击 登按钮,根据右下角显示的坐标找到 x = 200 m 的位置,界面显示如图 2-6 所示。

图 2-6 节点坐标查询界面

然后依次点击工具栏中图标 ┋, ∰, 进入输出节点时程选择模式。通过点击键盘'R' 键,进入节点选择模式。由于网格较密,需要拨动鼠标滚轴放大模型,当将 x = 200 m 的所有节 点都选择后,右键单击选择 All History Plot-Add,从而将 x = 200 m 上所有节点的应力、应变等

成功添加到时程输出文件,如图 2-7 所示。

图 2-7 添加时程输出界面

注: 1.在右侧快捷窗口中点击 Show Boundary Condition,可以检查是否正确添加边界条件;勾选 Show Monitoring Points 可以查看是否正确添加时程输出点。

2.边界条件添加时第二次设置会覆盖第一次设置,如重复添加边界条件,一定要保证第二次 的边界条件为最终边界条件或单独对重复节点进行多种不同的边界条件的设置。

2.1.4 水动力边界条件设置

本案例施加了波浪荷载,因此海床表面要施加水动力边界,如图 2-8 所示。波浪荷载通过 3 阶 Stokes 波的解析解进行计算获得,具体设置步骤为点击 FssiCAS—Preprocess— Hydrodynamics—Stokes Wave,如图 2-9 所示。

🛄 Displacement	•
🗊 Pore Pressure	•
🕂 Force	•
🚟 Flux	•
🚻 Distribution Pressure	
Viscoelastic Boundary	•
🚔 Fluctuating Wind Pressure	•
🚟 Flow Velocity	
🔨 Hydrodynamic	Apply
✓ UserDefined	•
← Periodic Condition	•

图 2-8 添加水动力边界条件示意图

Fssi	Coupled Way	×
[\	Stokes Wave Type:	3rd Wave Current
1	Wave Period (s) :	8
1	Wave Height (m) :	0
1	Water Depth (m) :	10
2	SWL Position (m) :	30
0	Current Velocity (m/s ²):	0
		ОК

图 2-9 Stokes 波的参数信息设置界面

2.1.5 Step 1 时间步

2.1.5.1设置材料参数

通过点击 FssiCAS—Preprocess—Material—Material 1/ Material 2,用户可以自行更改材料名称,设置材料参数。Material 1(弹性海床)的材料参数设置如图 2-10 所示,Material 2(海床)的材料参数与 Material 1 相同。

Material 1		-	Material 2	
M material i			1.50	
Material Name	弹性海床	<u>^</u>	Material Name	海床
Constitutive Model:	Elastic	v	Constitutive Model:	Elastic
Succeed	No Succeed		Succeed	No Succeed 🔍
Initial Stress Tensile	Yes		Initial Stress Tensile	Yes 🔻
Global Stress Integration:	L		Global Stress Integration:	
Stress Integration Algorithm:	Default 💌		Stress Integration Algorithm:	Default 💌
Constitutive Model Parameters:			Constitutive Model Parameters:	
Young's Modulus (Pa): 6e7			Young's Modulus (Pa): 6e7	
Poisson's Ratio : 0.3333			Poisson's Ratio : 0.3333	
Damping Model Parameters:			Damping Model Parameters:	
Damping Model: EL	ASTIC		Damping Model:	ELASTIC 💌
Young's Modulus (Pa): 0	Poisson's Ratio: 0		Young's Modulus (Pa): 0	Poisson's Ratio: 0
Damping Coefficient Direct			Damping Coefficient Dire	ect v
α: 0	β:		α: 0	β: 0
Permeability Type: Constant	$\checkmark K/K_0 = 1$		Permeability Type: Constan	$K/K_0 = 1$
			Material Parameters:	
Solid Particle Bulk Modulus (Pa): 1.0E+20	Saturation (0-1) V		Solid Particle Bulk Modulus (Pa): 1.0E+20	Saturation (0-1) 🔻 1
Granular Density (kg/m ³): 2700	Fluid Density (kg/m ³): 1000		Granular Density (kg/m ³): 2700	Fluid Density (kg/m ³): 1000
Void Ratio: 0.3333	Permeability x(m/s): 1e-5		Void Ratio: 0.3333	Permeability x(m/s): 1e-5
	Permeability y(m/s): 1e-5			Permeability y(m/s): 1e-5
L			L	
		OK Y		OK

图 2-10 海床的计算参数设置界面

2.1.5.2设置重力加速度场

点击 FssiCAS—Preprocess—Load—Filed Quantity—Uniform Field,为整个案例施加重力载 荷。即加速度场的 X 方向为 0 m/s2, Y 方向为 -9.806 m/s2,如图 2-11 所示。Step 2、Step 3 的 重力场在新建时间步时后自动复制当前时间步的设置,因此后续时间步不再重复施加加速度场。

Field Quant	lity	~
Acceleration (m/s ²)		
X :	0	
Y:	-9.806	
	ОК	Cancel

图 2-11 重力加速度设置

2.1.5.3设置求解器类型

点击 FssiCAS—Preprocess—Solver—Solver Type,在弹出对话框中设置求解器类型,Step 1 的求解器类型及其参数设置如图 2-12 所示。

Solver Setup		×
Solver:	Static	
Analysis Module:	Traditional Implicit FEM	▼
Sparse Solver Type:	Direct Sparse Solver (LU)	
Parameters		
Geometrical Nonlinearity	Off	▼
Rotation	Non-Rotation	▼
Stiffness Matrix Symmetry	No	▼
Iterative Convergence Criteria	0.01	
Property Updation	Updated	▼
Analysis Type	2D-Plane Strain	▼
Displacement Succeed	Yes	▼
NBFGS	1	▼
Parallel Method	CPU OpenMP	▼
CPU Parallel Threads	4	
	Ok	٦
		_

图 2-12 求解器类型及相关参数设置界面

2.1.5.4设置时间步

通过点击 FssiCAS—Preprocess—Solver—Time Step 设置时间步。

Simulation Time (s)为计算总时间,设置为1s; Interval for Time Steps (s)为时间步长,设置为0.1s; Interval for Updating Coordinate (s)为坐标更新时间,设置为1.1s (大于计算总时间,意为不更新坐标); Interval for Updating Global Stiffness Matrix (s)为刚度矩阵更新时间,设置为2s (不更新刚度矩阵); Maximum Iterations 为每个时间步最大迭代次数,设置为20步; Restart File Step (s)为输出重启文件的时间,设置为2s (不生成重启文件); Output Time Step (s)为输出 某一时刻所有节点/高斯点上的位移、应力、应变等结果文件的时间间隔,设置为每0.2s 输出一次结果文件; Results Output 为选择输出节点上的结果; History Plot Interval (s)为输出特定的节点或单元上的应力、应变等结果文件的时间间隔,设置为每0.2s 输出一次(意为不输出)。 α , β 1, β 2 为时间系数,保持默认值即可。具体设置如图 2-13 所示。

si Time Step	? ×
Sub Step 1	
Parameter	
Simulation Time (s)	1
Start Time of Current Step (s)	0
Interval for Time Steps (s)	0.1
Interval for Updating Coordinate (s)	1.1
Interval for Updating Global Stiffness Matrix (s)	2
Maximum Iterations	20
Restart File Output Interval (s)	2
Results File Output Interval (s)	0.2
Results Output	On Nodes 🔻
State Variables Output	No
Results Sequence	Manage
Results Format	Binary 🔻
History Output Interval (s)	0.2
α	0.6
β1	0.605
β2	0.6
	Create Delete

图 2-13 时间步相关参数设置界面

2.1.6 Step 2 时间步

为了修正 Step 1 的初始应力和稳态渗流,更好地衔接后续动力响应分析,在 Step 2 时间步中,土体采用一般线性弹性本构模型,求解器选择 Static。

图 2-14 增加时间步的步骤示意图

2.1.6.1设置材料参数

点击 Preprocess—Material—海床,用户可以自行更改材料名称,在显示的对话框中输入材料 参数。Step 2 中 Material 2 采用 General Elastic 本构模型,Material 1 (弹性海床)的材料参数 不进行修改,Material 2 (海床)的材料参数设置如图 2-15 所示。

e Model: General Elastic	
No Succeed	
ss Tensile Ves	
Model Parameters:	
K ₀ (Pa): 5.8507e7	
s G ₀ (Pa): 2.535e7	
e Confining Stress P ₀ (Pa): 4e3	
ess Ratio: 1.3	
ion for Bulk Modulus: Linear	
ion for Shear Modulus: Linear	•
elope and Tension Cutoff: Unapplied	
Nodel Parameters:	
odel: ELASTIC	
Julus (Pa): 0	
tio: 0	
pefficient: 0	
tio: 0 hefficient: 0	

图 2-15 材料参数设置界面

2.1.6.2设置求解器类型

点击 FssiCAS—Preprocess—Solver—Solver Type,在弹出对话框中设置求解器类型,Step 2 的求解器类型及其参数设置如图 2-16 所示。

F	Solver Setup		×
Solver:		Static	
Analysis Module:		Traditional Implicit FEM	
:	Sparse Solver Type:	Direct Sparse Solver (LU)	
	Parameters		
	Geometrical Nonlinearity	Off	▼
	Rotation	Non-Rotation	▼
	Stiffness Matrix Symmetry	No	▼
	Iterative Convergence Criteria	0.02	
	Property Updation	Non-Updated	▼
	Analysis Type	2D-Plane Strain	▼
	Displacement Succeed	Yes	▼
	NBFGS	1	▼
	Parallel Method	CPU OpenMP	▼
	CPU Parallel Threads	4	
		Ok	

图 2-16 求解器类型及相关参数设置界面

2.1.6.3设置时间步

点击 FssiCAS—Preprocess—Solver—Time Step,设置计算总时间为 1s,时间步长为 0.1 s, 每 2s 更新一次坐标,每 2 s 更新一次刚度矩阵,每个时间步最大迭代次数为 20 步,每 2s 生成一次重启文件,每 0.2 s 输出一次结果文件,输出节点上结果,每 0.2 s 输出一次 x = 200 m 上所有 节点的应力、应变等结果文件, α, β 1, β 2 为时间系数,保持默认值即可,具体设置步骤如 图 2-17 所示。

F _{ss} i Tim	F _{SS} [*] Time Step ? ×						
Sub Ste	Sub Step 1						
-Para	meter-						
Simul	ation Tir	ne (s)		1			
Start	ime of	Current Step (s)		0			
Interv	al for Tir	me Steps (s)	(D.1			
Interv	al for Up	odating Coordinate (s)	4	2			
Interv	al for Up	odating Global Stiffness Ma	trix (s)	2			
Maxir	num Iter	ations		20			
Resta	t File Ou	utput Interval (s)		2			
Result	Results File Output Interval (s)			0.2			
Result	s Outpu	t		On I	Nodes	▼	
State	State Variables Output			I	No		
Result	Results Sequence			Μ	lanage		
Result	s Forma	t		Bi	nary		
Histor	y Outpu	t Interval (s)		0.2			
α				0.6			
β1				0.605			
β2				0.6			
			Creat	te	Dele	ete	

图 2-17 时间步 2 相关参数设置界面

2.1.6.4设置初始条件

点击 FssiCAS—Preprocess—Initial State,设置初始条件,点击 ok,完成初始状态设置,如 图 2-18 所示。

ss Initial Sta	te X
Solver:	Static
Type:	Generate Initial File
Set initial	state to Zero Yes 💌
	Ok

图 2-18 初始条件设置界面

2.1.7 Step 3 时间步

Step 3 为波浪作用阶段,因此求解器选择 Dynamic,弹性海床选择可以更好地描述砂土的 动态力学行为的 PZIII 本构模型。 Step 2 设置完毕后,点击 Step 3 按键添加 Step 3, Step 3 会自 动复制 Step 2 的所有设置,点击界面工具栏的按键选择 Step 3 进入 Step 3 设置界面。本小节

只展示 Step 3 需要修改的与 Step 2 不同的设置。

2.1.7.1添加波浪

设置波浪周期 8s,波浪高度 3m,如图 2-19 所示。

Coupled Way

Stokes Wave Type:	3rd Wave _Current
Wave Period (s) :	8
Wave Height (m) :	3
Water Depth (m) :	10
SWL Position (m) :	30
Current Velocity (m/s ²):	0
	ОК

 \times

图 2-19 添加波浪

2.1.7.2设置材料参数

点击 Preprocess—Material—海床,用户可以自行更改材料名称,在显示的对话框中输入材料参数。Step 3 中海床采用 Pastor-Zienkiewicz Mark III 本构模型,材料参数设置如图 2-20 所示,其他材料参数不进行修改。

faterial Name 海床 onstitutive Model: Pastor-Zienkiewicz Mark III ucceed No Succeed nitial Stress Tensile Yes -Global Stress Integration: Default Stress Integration Algorithm: Default -Constitutive Model Parameters: Mc Mg ⁱ 1.32 0.45 α _c 0.45 α _c 0.45 α _c 4.2 β ₁ : 0.2 β ₂ : 4.2 β ₁ : 0.2 Point V ₂ : 2.0 Y ₂ : 2.0 Pariation Type:									
Pastor-Zienkiewicz Mark III No Succeed ucceed No Succeed nitial Stress Tensile Yes Global Stress Integration:	laterial Na	ame		海床					
No Succeed Mitial Stress Tensile Yes Global Stress Integration: Default Stress Integration Algorithm: Default Constitutive Model Parameters: Mr. 1.3 Mg: 1.32 Mr. 1.3 agi: 0.45 arc 0.45 Kevo (Pa): 2e6 Geso (Pa): 2.6e6 βo: 4.2 βt: 0.2 Hoi: 750 Huo (Pa): 4e7 Yvi: 2.0 Youni: 0.0 Po'(Pa): 4000 Youni: 0.0 Variation Type: ELASTIC V Damping Model: ELASTIC Q Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct g: 0	Constitutive	e Model:				Pastor-Zien	kiewicz Mark III		▼
Initial Stress Integration: Yes Global Stress Integration Algorithm: Default Constitutive Model Parameters: M_i : M_g : 1.32 α_g : 0.45 (A_5) α_c : (A_5) α_c : (A_2) β_1 : (A_2) β_1 : (A_2) β_1 : (A_2) β_1 : (A_2) (A_3) (A_2) (A_4) (A_2) (A_4) (A_2) (A_4) (A_2) (A_4) (A_4) (A_4) (A_4) (A_4) (A_4) (A_4) (A_4) (A_4) <td>ucceed</td> <td></td> <td></td> <td></td> <td></td> <td>No S</td> <td>Succeed</td> <td></td> <td>▼</td>	ucceed					No S	Succeed		▼
Global Stress Integration: Default Default Constitutive Model Parameters: M; 1.3 M_9 : 1.32 M; 1.3 α_9 : 0.45 α_4 : 0.45 κ_{evo} (Pa): 2e6 G_{eso} (Pa): 2.6e6 β_6 : 4.2 β_1 : 0.2 H_0 : 750 Hu_0 (Pa): 4e7 γ_{ui} : 2.0 γ_{DM} : 0.0 P_0' (Pa): 4000 $Voun'$: 0.0 Variation Type: ElaSTIC ∇ Damping Model Parameters: Damping Model: ELASTIC 0 Ω Poisson's Ratio: 0 0 0 Damping Coefficient Direct β_1 : 0 0	nitial Stres	s Tensile					Yes		▼
Stress Integration Algorithm: Default -Constitutive Model Parameters: M; 1.3 Mg: 1.32 M; 1.3 αg: 0.45 α; 0.45 Kevo (Pa): 2e6 Gaso (Pa): 2.6e6 βc: 4.2 β1: 0.2 Hg: 750 Hug (Pa): 4e7 Yui 2.0 YpM: 0.0 Po' (Pa): 4000 Variation Type: Variation Type: Damping Model Parameters: Damping Model: ELASTIC V Young's Modulus (Pa): 0 Poisson's Ratio: 0 Ω jirect jirect 0 jirect 0	Global	Stress Integration	:						7
Constitutive Model Parameters: Mg: 1.3 Mg: 1.32 Mg: 1.3 α_{gi} : 0.45 0.45 0.45 Kevo (Pa): 2e6 Geso (Pa): 2.6e6 β_{0i} : 4.2 β_{1i} : 0.2 Ho: 750 Huo (Pa): 4e7 Yu: 2.0 YDM: 0.0 Po' (Pa): 4000 Variation Type: Variation Type: Damping Model Parameters: Bulk and Shear Modulus Vary Linearly V Voung's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct φ_{12} φ_{13} φ_{14}	Stress Inte	egration Algorithm	1:		Default	V			
$\begin{array}{c c c c c c } M_{g} & 1.32 & & & M_{f} & 1.3 & & & \\ \hline & \alpha_{g} & 0.45 & & & & 0.45 & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0.45 & & & & & \\ \hline & \alpha_{g} & 0 & & & & & \\ \hline & 0 & & \beta_{f} & & & & \\ \hline & 0 & & & & & \\ \hline & 0 & & & & & \\ \hline & \alpha_{g} & & & & \\ \hline & 0 & & 0 & \\ \hline & 0 & & 0 & $	Constit	utive Model Paran	neters:						_
	M _g :	1.32			Mŕ	1.3			
Kevo (Pa): 2e6 Geso (Pa): 2.6e6 βo: 4.2 β1: 0.2 Ho: 750 Huo (Pa): 4e7 Yu: 2.0 YDM: 0.0 Po' (Pa): 4000 Variation Type: Variation Type: Variation Type: Damping Model Parameters: Damping Model Parameters: Voung's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct β : 0	α _g :	0.45			αş	0.45			
β0: 4.2 β1: 0.2 H0: 750 Hu0 (Pa): 4e7 Yu: 2.0 YDM: 0.0 P0' (Pa): 4000 Variation Variation Variation Type:	K _{evo} (Pa):	2e6			G _{eso} (Pa):	2.6e6			
H ₀ : 750 Hu ₀ (Pa): 4e7 Yu: 2.0 YDM: 0.0 P ₀ ' (Pa): 4000 0.0 0.0 Variation Type: 0.0 Variation Damping Model Parameters: Damping Model: ELASTIC Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct 0 α: 0 β: 0 0	β ₀ :	4.2			β1:	0.2			
Yu: 2.0 YDM: 0.0 Po' (Pa): 4000	H ₀ :	750			Hu ₀ (Pa):	4e7			
Po' (Pa): 4000 Variation Type: Bulk and Shear Modulus Vary Linearly Damping Model Parameters: Damping Model: ELASTIC Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct α: 0 β: 0	γu:	2.0			үрм:	0.0			
Variation Type: Bulk and Shear Modulus Vary Linearly Damping Model Parameters: Damping Model: ELASTIC Young's Modulus (Pa): Damping Coefficient α: 0 β: 0 0 0 0 0 0 0 0 0	P ₀ ' (Pa):	4000							
Bulk and Shear Modulus Vary Linearly Damping Model Parameters: Damping Model: ELASTIC Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct σ: 0 α: 0 β: 0	Variation	Туре:						 	
Damping Model Parameters: ELASTIC Damping Model: ELASTIC Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct α: 0 β:			Bulk and S	Shear Moo	dulus Vary I	inearly		▼	
Damping Model Parameters: Damping Model: ELASTIC Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient Direct α: 0 β: 0 0									
Damping Model: ELASTIC Young's Modulus (Pa): 0 Damping Coefficient Direct α: 0	Dampir	ng Model Paramet	ers:					 	٦
Young's Modulus (Pa):0Poisson's Ratio:0Damping CoefficientDirectα:0β:0	Damping	Model:	EL	ASTIC					
Damping Coefficient Direct α: 0 β: 0	Young's	Modulus (Pa):	0		Poisson's	Ratio:	0		
α: 0 β: 0	Dampir	ng Coefficient	Direct	•					
	α:		0		β:		0		
	Dever e e le i	ility Type:	Constant			$K/K_{0} =$	1		

图 2-20 材料参数设置界面

2.1.7.3设置求解器类型

点击 FssiCAS—Preprocess—Solver—Solver Type,在弹出对话框中设置求解器类型,Step 3 的求解器类型及其参数设置如图 2-21 所示。

Solver:	Dynamic Drained	
Analysis Module:	Traditional Implicit FEM	
Sparse Solver Type:	Direct Sparse Solver (LU)	
Parameters		
Geometrical Nonlinearity	Off	
Rotation	Non-Rotation	▼
Stiffness Matrix Symmetry	Yes	▼
Iterative Convergence Criteria	0.02	
Property Updation	Non-Updated	
Analysis Type	2D-Plane Strain	\blacksquare
Displacement Succeed	Yes	▼
NBFGS	1	•
Parallel Method	CPU OpenMP	▼
CPU Parallel Threads	4	

图 2-21 求解器类型及相关参数设置

2.1.7.4设置时间步

点击 FssiCAS—Preprocess—Solver—Time Step,设置计算总时间为 50 s,时间步长为 0.05s,每 5 s 更新一次坐标,每 5 s 更新一次刚度矩阵,每个时间步最大迭代次数为 20 步,不生 成重启文件,每 0.1 s 输出一次结果文件,每 0.1 s 输出一次时程点上的结果,α,β1,β2 保持默 认值,具体设置步骤如图 2-22 所示。

就 Time Step ? >							
Sub Step 1							
Parameter							
Simulation Time (s)	50						
Start Time of Current Step (s)	0						
Interval for Time Steps (s)	0.05						
Interval for Updating Coordinate (s)	5						
Interval for Updating Global Stiffness Matrix (s	;) 5						
Maximum Iterations	20						
Restart File Output Interval (s)	60						
Results File Output Interval (s)	0.1						
Results Output	On Nodes 🔻						
State Variables Output	No 🔻						
Results Sequence	Manage						
Results Format	Binary 🔻						
History Output Interval (s)	0.1						
α	0.6						
β1	0.605						
β2	0.6						
Cr	eate Delete						

图 2-22 时间步相关参数设置界面

2.1.7.5设置初始条件

点击工具栏,点击 FssiCAS—Preprocess—Initial State,设置初始条件,点击 ok,完成初始 状态设置,如图 2-23 所示。

ŧ	si Initial State ×							
			,					
	Solver:	Dynamic						
	Туре:	Generate Initial File						
	Set initial s	state to Zero Yes 💌						
		Ok						

图 2-23 初始条件设置界面示意图

2.1.8 计算

点击 FssiCAS—Preprocess—Computation—FSSI-W, 勾选 All Step, 开始计算。界面显示图 2-24 红框内所示内容时,即表示计算完成。

	Soil-Structures	PostProcess
Mode		
+Xy -Xy +Xz -Xz +Yz -Yz	Fssi	si Monitor – D X Solver Screen TimeHistory
ESEZ ESEZ	y z z	RunTime: 50.000 CumulativeTime: 52.000 Start Assembling CSR Matrix With 4 Threads Time Used in Forming CSR Matrix is: 0.30 Seconds Start LU Decomposing With 4 Threads Solution process at this step is completed at: 19:58:20 Begin To Save Final File 0 Displacement Order: 0 Displacement Order: 2 FssiCAS For Windows OS Program Name: FssiCAS V V

Elements: 17130 | Nodes: 35464 | S-Nodes: 17732 | F-Nodes: 17732 Element No.: Node No.: 23495 (200.35,12.4138,0) Materia

图 2-24 数值计算完成界面

注: 勾选 All Step 才能连续计算两个时间步。多时间步计算时生成的结果文件在 Results— Soil_Model—Multiple 文件夹中。

2.2 FssiCAS 图形界面操作——后处理

2.2.1 加载文件

点击 FssiCAS—Postprocess—Open Results File—Load File,加载 Results—Soil_Model 路径下的 Multiple 文件夹,如图 2-25 所示。

		Figi Choose a Soil Results File	×
		← → ~ ↑ <mark>】</mark> ≪ Results → Soil_Model ~ ひ 搜索**	Soil_Model"
	Fis Load Files - X	组织 * 新建文件夹	i≣ • ()
File UserDefined Support	File Type: FssiCAS Data Path: C/video case2 result/Results/Soil_Model/Multiple Load Files Reload Remove Ok	文档 名称 修改日期 ● 此电脑 30 对象 ■ 初方 ■ Multiple 2024/10/17 19:45 ● 文档 ● 広報 ● 文档 ● 広報 ● 本地画曲 (C:) ▼ べ 文件決: □	 受型 大小 文件表 文件表 取消

图 2-25 加载数值计算结果文件步骤图

注: 计算没有完成也可以在不停止计算的同时进入后处理加载结果文件进行结果查看。

2.2.2 绘制分布图

点击 FssiCAS—Postprocess—Distribution Plot—Solid—Displacement,在界面上方工具栏选择 Displacement X,输入想要查看的时间步点击回车,如图 2-26 所示。

图 2-26 X 方向的位移分布图

Dynamic 状态下的查看的结果等于当前时间步的计算结果减去第一个输出文件的计算结果; Full 状态下的结果分布就是当前时间步的计算结果,如图 2-27 所示。

图 2-27 位移、应力、应变结果分布图

点击 FssiCAS—Postprocess—Distribution—Solid & Structures—SeepageVelocity,可以绘制渗流分布图。可以通过选择工具栏,可以绘制渗流速度矢量图和渗流速度流线图。如图 2-28 所示。

,

图 2-28 流速、流线图