波浪作用下密实海床动力响应

本章节采用一个简单案例让用户使用软件计算在波浪荷载作用下海床的动态响应。案例是一 个厚度 30m、长度 100m 的海床,模型如图 1-1 所示,相关参数列于表 1.1、1.2 中;本案例共设 置 Step 1、Step 2 两个时间步,Step 1 为计算初始状态阶段,Step 2 为波浪作用阶段。Step 1 时 间步是为了计算初始应力,为后续的分析提供一个良好的初始状态。因此土体采用弹性本构模 型,求解器选择 Static;在 Step 2 时间步中,为计算波浪作用下的海床动力响应,土体采用一般 线性弹性本构模型,求解器选择 Consolidation。

表 1.1 波浪参数

Wave	
Water Depth (m)	15
Wave Period (s)	7
Wave Height (m)	3

表 1.2 土体参数(采用简单的线弹性本构模型)

Seabed	
Young's Modulus (Pa)	6x10 ⁷
Poisson's Ratio	0.33
Void Ratio	0.68
Permeability (m/s)	1x10 ⁻⁵
Granular Density (kg/m3)	2700

1.1 FssiCAS 图形界面操作——前处理

1.1.1 新建工程文件

在 FssiCAS 软件中,用户点击 File—New,即可新建一个项目;用户点击 File—Save,选择 之前新建的文件夹(选择 Seabed 文件夹),即可将新建的项目保存在之前新建的文件夹里;当 用户点击右上角(退出软件)时,在弹出的窗口中选择 Yes,可保存当前项目,选择 No即不保 存当前项目,如图 1-2 所示。

		ssi FssiCAS			
		File UserDe			
		🛅 Open	ss Note	×	
		New	There are unsaved	l items, save or not?	
		Save	<u>Y</u> es	<u>N</u> o Close	
		名称	美型		
		🍑 Breakwater	文件夹		
		🌡 Earthquake	文件夹		
		Pipeline	文件夹		
- 14		🍰 Seabed	文件夹		
File	e				
1	Open			ss Note	×
<u> </u>	New			Save or Not?	
	Save	く m 文件夹: Seabed			~1
	Save as		选择文件夹取消	Yes No	Close

图 1-2 在 FssiCAS 软件中新建和保存一个项目的过程图

注: 文件夹名字不能包含中文字, 软件的安装路径不能包含中文路径, 项目的保存路径不能包 含中文路径。

1.1.2 导入网格

网格文件利用 Gid 软件绘制,用户点击 FssiCAS—Preprocess—Load Mesh,在弹出的文件选择对话框中选择 Gid 输出的网格文件,双击或点击打开按钮载入网格文件,如图 1-3 所示。

在弹出的对话框中设置单元节点阶次,如图 1-4 所示。由于本案例中固体节点采用四边形 四节点单元,S.Node 默认为 4。海床包含流体作用,所以流体节点阶次设置为 1,点击 Ok 按钮 确认选择。

Model Besults	^	~ 名称	举型	修改日期	大小
Results		Hub.	~=	15 KCH 70	7C3
PreProcess		Seabed.gid	文件夹	2020/11/14 1	
E LoadMesh		Seabed.GIDMESH	GIDMESH 文件	2020/6/4 15:43	232 KB
Gid		🗋 Seabed.igs	IGS 文件	2020/6/4 15:44	2 KB
Abaqus					
HyperMesh					
Gmsn					
Allsys					
Cuter Roundany					
Materials					
Boundary Conditions					
E-Loads					
- HvdroDvnamics					
🗮 No Hvdro	11				
Stokes Wave					
CFD CFD	~				
- AreoDynamics					
- Fluctuating Wind	文件名	(N): Seabed.GIDMESH			~
FAST					
🖻 – Earthquake					

图 1-3 导入 Gid 软件输出的网格文件

👫 Load Me	esh		? ×
	Solid Node	Element Type	Fluid Order
Material-1	4	Solid Element	1 🔻
Reduced	Integration		Ok

图 1-4 设置固体节点数和流体节点阶次

注: 这里通常规定从第三方网格画分软件导入的网格系统单元上的固体节点的阶次不能改变, 由软件自行判断固体节点的阶次。从 GID、Hypermesh Solidworks 等建模软件导出的网格 中固体节点为几阶,那么导入 FssiCAS 软件后固体节点还是原阶次,但可以指定流体单元 的阶次,但是流体单元的阶次不能大于同位置固体单元的阶次。

1.1.3 导入背景线

加载几何模型的背景线,是为了后续施加边界条件、区分材料以及设置输出时程结果的线。

在 Model 树状菜单栏中的 Load Background 中,用户点击 Outer Boundary,在弹出的 Outer Boundary 窗口中点击 Choose File,选择从 Gid 或 Solidworks 等建模软件中导出的背景线.igs 文件,点击打开,关闭弹出的 Outer Boundary 窗口,可导入几何模型的背景线,如图 1-5 所示。

图 1-5 导入几何模型的背景线

- 注: 1.请导出背景线.igs 文件时仅保留点、线、面的信息, 删除相关体、注释等;
 - 2.内、外背景线一定要分开导入;
 - 3.二维空间不考虑内背景线,三维空间里才考虑内背景线;
 - 4.在三维情况下导出背景线.igs 文件时,请不要保留内边界的信息;

5.背景线.igs 文件的格式是属于 GID 软件自带的文件格式,是国际通用格式,属于开放性格式;

1.1.4 添加边界条件

需要将几何模型的边界条件设置为:海床左右两侧的边界设置为 X 方向位移固定,底部边界设置为 X、Y 方向位移均固定,顶部边界设置孔压固定和添加水动力边界条件;

点击工具栏 2 中图标 🔽,	进入边界选择模	其式,如图 1- 6	5所示;		
点击工具栏 2 中图标 🎛,	进入背景线选择	峰模式,如图	1-7 所示;		
点击键盘'R'键,开始选择	•				
	🔽 😳 🕏	🔁 🏵 📙	Step2	v Step Step S	🤁 쓶
	图 1-6 进入	\边界选择模 :	式		
	V = B2 B2 I	B B 📙	Step2	v Step Step S	🤠 쓶
	图 1-7 进入	背景线选择模	[式		

在工作区中拖动鼠标框选左右两侧的边界,用鼠标拖动选中后被选择的线出现高亮;

点击鼠标右键,在显示的边界条件下拉菜单中选择 Displacement—Add,在弹出的窗口中勾选 Constant Displacement 下面 XDof 并点击 OK,即可将左右两侧的边界设置为 X 方向位移固定,如图 1-8 所示;

图 1-8 将左右两侧的边界设置为 X 方向位移固定

按照上述方法,在工作区中拖动鼠标框选底部边界,用鼠标拖动选中后被选择的线出现高亮;

点击鼠标右键,在显示的边界条件下拉菜单中,选择 Displacement—Add,在弹出的窗口中 勾选 Constant Displacement 下面 XDof 和 YDof 并点击 OK,即可将底部边界设置为 X、Y 方向 位移均固定,如图 1-9 所示。

图 1-9 将底部边界设置为 X、Z 方向位移均固定

由于土体顶部受静水压力作用,因此这顶部上的节点要施加水动力边界。

在工作区中拖动鼠标框选顶部边界,用鼠标拖动选中后被选择的线高亮;

点击鼠标右键,在显示的边界条件下拉菜单中,选择 Hydrodynamic—Add,即可将顶部边界 设置为孔压固定和添加水动力边界条件,如图 1-10 所示;

再次点击键盘'R'键,可结束选择;

点击操作界面右侧的伸缩区,勾选 Show Boundary Condition,可以检查是否添加边界条件。

图 1-10 将顶部边界设置为孔压固定和添加水动力边界条件

1.1.5 水动力边界条件设置

 \equiv

在前处理界面上 Model 树状菜单栏里的 Hydrodynamics 中,点击 Stokes Wave; 在弹出的窗口中输入波浪参数:一阶行波,波浪周期 1s,波高 0m(第一步只有静水压力, 不施加波浪力),水深 15m,水位线 15m+30m=45m,点击 OK,添加静水压力,如图 1-11 所

图 1-11 添加静水压力

注:水位线是指静态水面与 X 坐标轴 X=0 m 的距离。

1.1.6 设置材料参数

在前处理界面上的 Materials 中选择 Material 1,点击进行材料属性和参数的设置,在工作区中用鼠标左键点击海床模型,然后在弹出的窗口中选择线弹性本构模型,并输入海床属性参数,点击 OK,即可设置材料属性和参数,如图 1-12、图 1-13 所示;海床的杨氏模量为 6e⁷,泊松 比 0.33,孔隙比 0.68,渗透率 1e⁻⁵,其他设置不变。

图 1-12 前处理界面中设置材料属性和参数的功能按钮 Material

Material 1				-		×
						^
Material Name	Ma					,
Constitutive Model:		Elastic				
Succeed		No Succee	ed			J
Initial Stress Tensile		Yes				J
Global Stress Integrat	ion:					1
Stress Integration Algori	ihm:	Default 🔻				
Constitutive Model Pa	rameters:					í.
Young's Modulus (Pa): 6	e7					
Poisson's Ratio : 0	33					
Damping Model Parar	neters:					
Damping Model:	ELASTIC	▼				
Young's Modulus (Pa):	0	Poisson's Ratio:	0			
Damping Coefficient	Direct					
α:	0	β:	0			
						J
Permeability Type:	Constant	• $K/K_0 = 1$				
Material Parameters:-						
Solid Particle Bulk Modu	lus (Pa): 1.0E+20	Saturation (0-1)	▼ 1			
Granular Density (kg/m³	: 2700	Fluid Density (kg/m³):	1000			
Void Ratio:	0.68	Permeability x(m/s):	1e-5			
		Permeability y(m/s):	1e-5			
L					OV	
					OK	~

图 1-13 海床的相关属性参数

1.1.7 设置重力加速度场

点击 FssiCAS—Preprocess—Load—Filed Quantity—Uniform Acceleration Field,为整个案例 施加重力载荷。即加速度场的 X 方向为 0 m/s², Y 方向为 -9.806 m/s²,如图 1-14 所示。Step 2 的 重力场在新建时间步时后自动复制当前时间步的设置,因此后续时间步不再重复施加加速度场。

Important Important Important <th></th> <th></th> <th></th>			
	 HyperMesh Gmsh Ansys FssiMesh ✓ LoadBackground ※ Outer Boundary Material 1 Boundary Conditions 左右本固定 席部以固定 水动力边界 Contact Structure-Solid Loads HydroDynamics ※ No Hydro ※ Stokes Wave ※ Structure-Solid Loads HydroDynamics ※ No Hydro ※ Structure-Solid Loads HydroDynamics Structure-Solid Loads HydroDynamics ※ No Hydro ※ Structure-Solid Loads HydroDynamics Structure-Solid Loads HydroDynamics ※ No Hydro ※ Structure-Solid Loads HydroDynamics Warding HydroDynamics Warding HydroDynamics Warding HydroDynamics Warding HydroDynamics Field Quantity No Acceleration Field Centrifugal Acceleration Field © Time Step Step 1 	Fssi Fssi	Figi Field Quantity Acceleration (m/s ²) X: Y: -9.806 OK Cancel

图 1-14 重力加速度设置

1.1.8 设置求解器类型

在前处理界面上 Model 树状菜单栏里的 Solver 中,点击 Solver Type,在弹出的对话框中设置求解器类型,求解器设置为 Static (Static 表示与时间无关的静态,为了获得初始状态最好用 static 求解器),并进行相关属性参数设置,如图 1-15 所示。

PreProcess	Mode			
LoadMesh				
Gid				
Abaqus	+** ***			
HyperMesn				
Answ		Solver Setup	×	
FssiMesh	ES WS			
□ I LoadBackground	W _N E _N	Solver:	Static 🔻 Drained 🔻	
- 🖧 Outer Boundary		Applyris Module:	Traditional Implicit FEM	
- Materials		Analysis Module.		J
Material 1		Sparse Solver Type:	Direct Sparse Solver (LU)	
Boundary Conditions		Parameters		
一左右x固定			0″	
- K部Xy回正 - Fairwath - 注目		Geometrical Nonlinearity	UTT V	
一项都不可力边介 E-Contact		Rotation	Non-Rotation 🔻	
Structure-Solid		Stiffness Matrix Symmetry	No	
E Loads			0.01	
HydroDynamics		Iterative Convergence Criteria	0.01	
Stokes Wave		Property Updation	Non-Updated 🔻	
TE CFD		Analysis Type	2D-Plane Strain	
AeroDynamics		Distance of Control		
- Fluctuating Wind		Displacement Succeed	Yes	
FAST		NBFGS	1 🔻	
Earthquake No Earthquake		Parallel Method	CPU OpenMP	
Sinusoidal Function		CDU Descliet Three de		
Earthquake Library		CPU Parallel Threads	4	
- National Standard				
UserDefined			Ok	
Field Quantity				
No Acceleration Field				
Contributed Acceleration Field	AY .			
Centrilugal Acceleration Field	T T			
	Z X			
Step 1				
Sub Step 1				
□ Step2				

图 1-15 设置求解器的相关属性参数

1.1.9 设置时间步

通过点击 Time step 中 step 1 下面 Sub_step 1 设置时间步,具体设置参数如图 1-16 所示。 Simulation Time (s)为计算总时间,设置为 1 s; Interval for Time Steps (s)为时间步长,设置为 0.1 s; Interval for Updating Coordinate (s)为坐标更新时间,设置为 1.1 s (大于计算总时间,意为 不更新坐标); Interval for Updating Global Stiffness Matrix (s)为刚度矩阵更新时间,设置为 1.1 s (不更新刚度矩阵); Maximum Iterations 为每个时间步最大迭代次数,设置为 50 步; Restart File Output Interval (s)为输出重启文件的时间,设置为 1.1 s (不生成重启文件); Restart File Output Interval (s)为输出某一时刻所有节点/高斯点上的位移、应力、应变等结果文件的时间间 隔,设置为每 0.1 s 输出一次结果文件; Results Output 为选择输出节点上的结果; History Output Interval (s)为输出特定的节点或单元上的应力、应变等结果文件的时间间隔,设置为每 0.1 s 输出一次 0.1 s (意为不输出)。α, β 1, β 2 为时间系数,保持默认值即可。可在 Results Sequence 中选择输出流速、流线图,每一步均需要选择。

ssi Time Step	?	\times		
Sub Step 1				
Parameter				
Simulation Time (s)	1			
Start Time of Current Step (s)	0			
Interval for Time Steps (s)	0.1		1 1 1 1 1 1	
Interval for Updating Coordinate (s)	1.1		Results Sequence	? X
Interval for Updating Global Stiffness Matrix (s)	1.1		Physical Quantity	Value
Maximum Iterations	50		Coordinate	
Restart File Output Interval (s)	1.1	5	Displacement	
	2.1	- 1	Pore Pressure	\checkmark
Results File Output Interval (s)	0.1		Saturation	
Results Output	On Nodes		Seepage Velocity	
State Variables Output	No	-	Seepage Force	
State variables output			Stress	\checkmark
Results Sequence	Manage		Strain	
Results Format	Binany		Void Ratio	\checkmark
Results Format	Dinary		Acceleration	
History Output Interval (s)	0.1		Bending Moment	
α	0.6		Rotation Angle	
24	0.005	=	Temperature	
β1	0.605			
β2	0.6		Reset	Create
Cre	ate Dele	te		

图 1-16 设置时间步和相关属性参数

注: 1.更新坐标的数值大于总时间数值表示不更新,反之表示更新;

2.更新刚度矩阵的数值大于总时间数值表示不更新,反之表示更新;

3.输出重启文件的数值大于总时间数值表示不输出,反之表示输出,但是无论如何,程序结 束时都会输出一次;

4.必须满足条件: $\alpha \ge 0.5$ 、 $\beta_1 \ge \beta_2 \ge 0.5$;

1.1.10 设置初始条件

在前处理界面上 Model 树状菜单栏中,点击 Initial State,点击 OK,即可完成 Step 1 初始状态设置,如图 1-17 所示。

 HyperMesh Gmsh Ansys FsiMesh ジ LoadBackground & Outer Boundary Material 1 Boundary Conditions 左右×固定 底部水周定 水动力边界 Contact 	Mode + My + My + My + My - My	Fssi	
Structure-Solid			
Loads HydroDynamics HydroDynamics Xo Hydro Stokes Wave GCD Hocks Wave GOD GOD			Fisi Initial State × Solver: Static Type: Generate Initial File Set initial state to Zero Yes Ok
Solver			
Time Step			
B-Step 1 Sub_Step 1 Sub_Step 1 Time History Generation B-Computation FSSI-W Section Time State		Z Z	<u>*</u>

图 1-17 设置初始状态和指定初始条件

1.1.11 时间步 Step 2 设置

图 1-18 增加时间步的步骤示意图

Step 2

Step 1

v Step Step Ste

如果先设置 Step 1 的边界条件和前处理的各项参数再添加新的时间步,新的时间步会自动 复制 Step 1 的所有设置;如果先添加新的时间步再设置 Step 1,每个时间步都需要重新设置对应 的边界条件和参数。为了提高操作效率,一般情况下先将 Step 1 的所有参数都设置完整再创建

新的时间步,本案例 Step 2 的相关参数设置如下。

1.1.12 水动力边界条件设置

Step 1 只为计算模型初始状态,不施加波浪力, Step 2 添加波浪周期、高度。

在前处理界面上 Model 树状菜单栏中的 Hydrodynamics 中, 点击 Stokes Wave;

在弹出的窗口中输入波浪参数,如图 1-19 所示:波浪类型选择一阶波浪,波浪周期为 7s, 波高为 3m,水深为 15m,水位线为 15+30=45m,点击 OK;

SS Coupled Way	>
Stokes	
Wave Type:	1st Wave
Wave Period (s) :	7
Wave Height (m) :	3
Water Depth (m) :	15
SWL Position (m) :	45
	ОК

图 1-19 施加波浪荷载

注:水位线是指静态水面与 X 坐标轴 X=0 m 的距离。

1.1.13 设置材料参数

Step 2 材料参数和 step 1 相同,具体参数设置参考图 1-13。

1.1.14 设置求解器类型

在前处理界面上的 Model 树状菜单栏中的点击 Solver,在弹出的对话框中设置求解器类型, 求解器设置为 Consolidation (Consolidation 表示土的固结分析,与时间一阶导数相关),并进行相关属性参数设置(对称),如图 1-20 所示。

Solver Setup		×
Solver:	Consolidation	▼
Analysis Module:	Traditional Implicit FEM	
Sparse Solver Type:	Direct Sparse Solver (LU)	
Parameters		_
Geometrical Nonlinearity	Off	▼
Rotation	Non-Rotation	▼
Stiffness Matrix Symmetry	Automatic	▼
Iterative Convergence Criteria	0.01	
Property Updation	Updated	▼
Analysis Type	2D-Plane Strain	▼
Displacement Succeed	Yes	▼
NBFGS	1	▼
Parallel Method	CPU OpenMP	▼
CPU Parallel Threads	4	
	Ok	

图 1-20 求解器的相关属性参数设置

1.1.15 设置时间步

Step 2 的时间步设置如图 1-21 所示。计算总时间设置为 70 s;时间步长设置为 0.1 s;坐标 更新时间设置为 71.1 s;刚度矩阵更新时间设置为 71.1 s;每个时间步最大迭代次数设置为 50 步;重启文件的时间设置为 71.1 s;每 0.1 s 输出一次结果文件;输出节点上的结果;每 0.1 s 输 出一次选定节点或单元的时程文件。α,β1,β2 保持默认值。

图 1-21 设置时间步和相关属性参数

注: 1.更新坐标的数值大于总时间数值表示不更新,反之表示更新;

2.更新刚度矩阵的数值大于总时间数值表示不更新,反之表示更新;

3.输出重启文件的数值大于总时间数值表示不输出,反之表示输出,但是无论如何,程序结束时都会输出一次;

4.必须满足条件: $\alpha \ge 0.5$ 、 $\beta_1 \ge \beta_2 \ge 0.5$

1.1.16 设置初始条件

在前处理界面上 Model 树状菜单栏中,点击 Initial State,点击 OK,并在弹出的 Question 窗口中选择 Yes,完成指定初始条件,如图 1-22 所示;

──水动力边界 Ə⊂Contact		
Structure-Solid		
- Loads		
- HydroDynamics		
- 🗮 No Hydro	🔜 Initial State 🛛 🕹	
- 🏹 Stokes Wave		
🎦 CFD		
□ AeroDynamics	Column Convellidation	
- Fluctuating Wind	Solver: Consolidation	
- FAST	Type: Generate Initial File 🔻	
Earthquake		
No Earthquake	Set initial state to Zero Yes 🔻	
- Sinusoidal Function		
Earthquake Library		
National Standard	Ok	
- UserDefined		
- Field Quantity - No Assolution Field		
Uniform Acceleration Field		
Centrifugal Acceleration Field		
Solver		
E-Step 1		
Sub Step 1		
⊡-Step2		
Sub Step 1	[↑] ^γ	
Time History	7 7	
• Initial State	••••••	
Computation		
TCCI W		

图 1-22 设置初始条件

1.1.17 计算并保存

点击在前处理界面上 Model 树状菜单栏里 Computaton 中的 FSSI-W, 点击 All step, 保存当 前项目, 开始计算, 如图 1-23 所示;

计算完成后结果储存在 Project\Results\Soil_Model\Multiple。 在退出 FssiCAS 软件时,用户在弹出的 Note 窗口中点击 Yes,即可退出软件时保存项目。

Solution process at this step is completed at: 11:23:43				
Begin To Save Final File				
Displacement Order: 0 Displacement Order: 1				
FssiCAS For Windows OS Program Name: FssiCAS				

图 1-23 计算和保存

注: FSSI-NW 表示启动计算程序时不修改输入文件。 FSSI-W 表示启动计算程序时修改输入文件。

1.2 FssiCAS 图形界面操作——后处理

用户点击树状菜单栏上的 Results,即可进入后处理界面。

1.2.1 加载文件

点击在后处理界面上 Results 树状菜单栏中的 Open Results File,在弹出的窗口中点击 Soil ResultsFiles Director—Load Files,选择需要处理的结果文件夹 Results—Soil_Model—Multiple,即可进入后处理阶段,如图 1-24 所示。

图 1-24 选择需要处理的结果文件夹的过程

1.2.2 绘制分布图

点击 FssiCAS—Postprocess—Distribution—Solid & Structures ,可以选择绘制位移、应力、 孔压等计算分布图。例如,点击树状菜单里中的 Displacement,在界面上方工具栏选择 Displacement X,输入想要查看的时间步点击回车,即可绘制 X 方向的位移分布图。选择

Displacement Y, 可绘制 Y 方向位移图, 如图 1-25 所示。点击左右按键, *** > *** 可查看每 个时间步的位移变化。

图 1-25 位移分布图

点击 FssiCAS—Postprocess—Distribution—Solid & Structures—Pore Pressure,可以查看孔隙 压力分布图。如图 1-26 所示。点击此菜单,可查看动态孔隙压力变化。

Dynamic

Pore Pressure

图 1-26 孔压分布图

点击 FssiCAS—Postprocess—Distribution—Solid & Structures—SeepageVelocity,可以绘制渗流分布图。可以通过选择工具栏,可以绘制渗流速度矢量图和渗流速度流线图。如图 1-27 所示。可点击伸缩区中 Scale Factor 调节流速、流线显示的状态,如图 1-28 所示。

F	SSi •	Seepage Str	Seepage Streamlines Time: 1.1s				
Z-Axis	0 5 10 15 20 25						
	0 21	-3.25e-07	60 X-Axis Unit: m/s 1.27e-10	80 3.25e-07	6.51e-07		
		图 1-27 Monitoring Point Solid Model Deformed Solid Mesh Solid Vector Solid Streamlines Solid Feature Edges	流速、流线图 Solid Mesh □ □				
		Wave Model Image: Constraint of the second seco	Wave Mesh 0.5 ctor				
		Glyph Scale Factor Number of Arrows 图 1-28 调节初	5 10000 Apply 充速、流量显示状态	S.			

1.2.3 录制动态视频

第一步点击保存按钮,第二步点击 play 按钮,位移、孔压等图片会随着时间步的增加保存 到结果文件 ExportFiles 中,如图 1-29 所示。可通过 matlab、ps、pr 等软件将图片制作成视频。

				2		1	
Full		Displaceme	nt X 🔍	← ▶ ⇒	0.1	₽	
← → ◇ ↑ 🖡 > 此电脑 > 桌面 > Case > Case1 > Results > Soil_Model > Multiple > ExportFiles v 🖏 搜索*ExportFiles*							
📌 快速访问	R mentan (N next in 1					
OneDrive							
🧢 此电脑	La lance	La L	i.	1	T	1	
📙 3D 对象	Displacement	Displacement	Displacement	Displacement	Displacement	Displacement	Displacement
喜 视频	X_DISTI_0.1	X_DIStIT_0.2	X_Distil_0.5	X_DIStIT_0.4	X_DIStIT_0.5	X_Distil_0.0	X_DIStIT_0.7
▶ 图片							
📔 文档	N	N	N	N	N	N	N
🐌 下载							
▶ 音乐	Displacement	Displacement	Displacement	Displacement	Displacement	Displacement	Displacement
	X_Distri_0.8	X_Distri_0.9	X_Distri_1.1	X_Distri_1.2	X_Distri_1.3	X_Distri_1.4	X_Distri_1.5
Windows 10 (C:)							
— 软件(D:)	N	N F	5 ···· ··· ··· ···	8 r	N	8 r	N
 							
 新加益 (F.) 新加益 (G.) 	Displacement	Displacement	Displacement	Displacement	Displacement	Displacement	Displacement
	X_Distri_1.6	X_Distri_1.7	X_Distri_1.8	X_Distri_1.9	X_Distri_1	X_Distri_2.1	X_Distri_2.2
♥ 网络							
83 不而日							
图 1-29 结果图片							